
SINGULARITY ANALYSIS

ADAM ZWEIGER

Abstract. While generating functions are often studied combinatorially as formal objects,
we can also treat them as functions and study how properties of the functions govern the
asymptotics of the underlying combinatorial sequence. In this expository paper, we intro-
duce basic ways of finding asymptotics, develop more methods for meromorphic functions,
and then explore the general method of singularity analysis for analyzing the coefficients of
generating functions. We assume some background knowledge of generating functions and
complex analysis.

1. Introduction

In this section, we establish some definitions and find asymptotics for coefficients of some
simple generating functions without advanced methods.

Definition 1.1. A singularity of a function f is a point where the function ceases to be
defined or analytic.

Definition 1.2. Two functions f(x) and g(x) are said to be asymptotically equivalent, or
that f(x) ∼ g(x), if f(x) = g(x) + o(g(x)).

We will see that the location of a function’s singularities determines the exponential growth
of its coefficients, and the type of singularity determines the subexponential factor.

Theorem 1.3 (Pringsheim’s Theorem). If f(z) can be represented by the series expansion

f(z) =
∞∑
n=0

anz
n

with each an being nonnegative and has a radius of convergence of R, then the point z = R
is a singularity of f(z).

Proof. Let

f(z) =
∞∑
n=0

anz
n

for nonnegative coefficients an and some radius of convergence R. First, note that we can
assume without loss of generality that R = 1 since all other cases can be reduced to this by
multiplying each of the coefficients by a factor. Now suppose for the sake of contradiction
that z = 1 is not a singularity and that f(z) is analytic in some disc of radius r < 1 centered
at z = 1. We will show that the power series of f converges in a disc with radius greater
than 1, which is a contradiction.
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First, we choose some point z0 on the real axis close to z = 1, specifically such that
1− r

2
< z0 < 1. The series expansion of f about z0 is given by

f(z) =
∞∑

m=0

bm(z − z0)
m.

We can now find bn in terms of ai’s. Let y = z − z0. Then,

f(z) = f(y + z0) =
∞∑
n=0

bny
n =

∞∑
n=0

an(y + z0)
n.

Expanding with the binomial theorem,

f(z) =
∞∑
n=0

an(y + z0)
n

= (a0 + a1z0 + a2z
2
0 + · · · ) + y(a1 + 2a2z0 + · · · ) + y2(a2 + 3a3z0 + · · · ) + · · · .

In general, the coefficient of ym is both bm and
∞∑
k=0

am+k

(
m+ k

m

)
zk0 .

Therefore,

bm =
∞∑

n=m

(
n

m

)
anz

n−m
0 ,

which implies bm ≥ 0 for all m. Now, note that
∑∞

m=0 bm(z − z0)
m converges at 2− z0 since

2− z0 < 1 + r
2
< z0 + r. Therefore,

f(2− z0) =
∞∑

m=0

(
∞∑

n=m

(
n

m

)
anz

n−m
0

)
(2− 2z0)

m

=
∞∑
n=0

an

n∑
m=0

(
n

m

)
zn−m
0 (2− 2z0)

m

=
∞∑
n=0

an((z0) + (2− 2z0))
n

=
∞∑
n=0

an(2− z0)
n,

where we have convergence at each step. Therefore, for some 2−z0 > 1, we have an = o((2−
z0)

−n), thus the radius of convergence is strictly greater than 1, which is a contradiction. ■

This theorem will be very important to us in this section because combinatorial generating
functions are all represented with power series of nonnegative coefficients.

Definition 1.4. Singularities of functions analytic at 0 with magnitude equal to the radius
of convergence of the function are called dominant singularities.

We can now use Pringsheim’s Theorem to find dominant singularities of some combinato-
rial classes.
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Definition 1.5. We say that a sequence {an} is of exponential order Kn if and only if

lim sup |an|1/n = K.

A sequence is subexponential if it is of exponential order 1n.

For any sequence {an}, we can write an = Knθ(n) for some K and some subexponential
factor θ(n). If {an} is of exponential order Kn, then for any ε > 0, we have |an| > (K − ε)n

for infinitely many values of n and |an| < (K + ε)n except for only finitely many values of n.
Now, recall the exponential growth formula.

Theorem 1.6 (Exponential Growth Formula). If f(z) is analytic at the origin and R is the
distance of the nearest singularity of f from the origin,

R = sup{r | f is analytic on |z| < r},
then the coefficients fn = [zn]f(z) are of exponential order

(
1
R

)n
. Additionally, if all coeffi-

cients are nonnegative, we can define

R = sup{r | f is analytic for all 0 ≤ z < r}.
Proof. Let R′ be the radius of convergence of f(z) at z = 0. We know that R ≥ R′ since
it is analytic for all |z| < r. However, we also know that there must be a singularity on
the boundary of the disc of convergence, so R ≤ R′. Therefore, R = R′. Furthermore, for
functions with nonnegative coefficients such as combinatorial generating functions, z = R′ is
a singularity of f(z) by Pringsheim’s Theorem, so we need only use the less strict formulation
of

R = sup{r | f is analytic for all 0 ≤ z < r}.
Now that we know R = R′, by the definition of radius of convergence, for all ε > 0,

limn→∞ fn(R− ε)n = 0. Therefore, for all n sufficiently large, |fn|(R− ε)n < 1, and |fn|1/n <
1

R−ε
except for a finite number of n. Similarly, |fn|(R + ε)n diverges to infinity, so |fn|1/n >

(R + ε)−1 infinitely often.
■

We can now use this formula to find the asymptotic behavior of some example generating
functions.

First, we start with the Motzkin numbers. Let M be the class of unary-binary trees,
meaning that each node can have 0, 1, or 2 children. We will find a generating function for
M and then find asymptotics for the coefficients.

First, we set Ω = {0, 1, 2} to get the specification,

M ∼= Z ×
(
E +M+M2

)
.

Solving the quadratic equation M(z) = z+ zM(z)+ zM(z)2, taking the negative root of the
quadratic after checking some coefficients, we get

M(z) =
1− z −

√
1− 2z − 3z2

2z
= z + z2 + 2z3 + 4z4 + 9z5 + · · · .

Now, we can factor the expression under the square root to get

M(z) =
1− z −

√
(1 + z)(1− 3z)

2z
,

so z = 1
3
is the closest singularity to the origin, where M must have a branch point. Thus,

M(z) is of exponential order 3n.
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2. Rational and Meromorphic Functions

We have seen how the location of singularities determines the exponential growth rate,
but now we show how the type of singularity determines the corresponding subexponential
factor θ(n).

First, consider rational functions, which are functions of the form P (x)
Q(x)

, for polynomials P

and Q.

Theorem 2.1. Suppose f(z) is a rational function that is analytic at zero with poles at
α1, α2, . . . , αm. Then, there exists polynomials P1, P2, . . . , Pm, such that Pj has degree equal
to the order of the pole of f at αj minus one, so that for all sufficiently large n,

[zn]f(z) =
m∑
j=1

Pj(n)

αn
j

.

Proof. Let f(z) be a rational function of the form f(z) = A(z)
B(z)

for polynomials A and B. It

must have a partial fraction decomposition of

f(z) = Q(z) +
n∑

j=1

mj∑
r=1

cj,r
(z − αj)r

where Q(z) has degree (degA − degB) and mj is the multiplicity of the pole at αj. Now,
with the binomial theorem, we can find that the contribution to the zk term in (z−αj)

−r is

cj,r

(
−r

k

)
zk(−αj)

−r−k =
(−1)rcj,r

αr+k
j

zk
(
k + r − 1

k

)
= zk

(−1)rcj,r

αr+k
j

(
k + r − 1

r − 1

)
.

This coefficient is a polynomial of degree r − 1 in n, thus we have proven the theorem. ■

Furthermore, we have shown that each pole αj of degree r contributes

r∑
k=1

(−1)kcj,k

αn+k
j

(
n+ k − 1

k − 1

)
to the coefficient of zn in f. This extends to the more general case of meromorphic functions
too. To see this, we first look at the Laurent expansion of a meromorphic function. If a
function f(z) is meromorphic on some closed disk |z| ≤ R and αj is a pole of f of order r,
then in some punctured disk centered at αj, we have the expansion

f(z) =
r∑

k=1

cj,k
(z − αj)k

+
∞∑
k=0

dj,k(z − αj)
k.

Definition 2.2. In the expansion above, we denote

r∑
k=1

cj,k
(z − αj)k

to be the principal part of the expansion of f about singularity αj.

We have seen before that the principal part of f about αj can be expressed as
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Lemma 2.3. The principal part of f about αj can be expressed as

∞∑
n=0

(
zn

r∑
k=1

(−1)kcj,k

αn+k
j

(
n+ k − 1

k − 1

))
for some constants cj,k.

Proof. Just as in the proof of Theorem 2.1, we can use the Binomial Theorem to find that
the contribution of

r∑
k=1

cj,k
(z − αj)k

to the coefficient of zn is
r∑

k=1

cj,k

(
−k

n

)
(−αj)

−n−k =
r∑

k=1

cj,k(−1)kα−n−k
k

(
n+ k − 1

n− 1

)
.

Summing these up for all n, we get the desired expression. ■

We can use these principal parts to modify f to make it analytic. In particular, if we
subtract the principal part of f at αi from f, we get a new function that is analytic at f.
If we subtract the principal parts of all singularities in some disk, we make a new function
that is analytic on that entire disk. With this idea, we can greatly extend Theorem 2.1.

Theorem 2.4. Suppose f(z) is meromorphic in some region containing the origin with
poles at α1, . . . , αm such that R = |α1| ≤ |α2| ≤ · · · ≤ |αm|. Let α1, . . . , αs be all the poles of
smallest magnitude (that is, of magnitude R) and let αs+1 have magnitude R′. Then for any
R′ > ε > 0, we have

[zn]f(z) = [zn]

(
s∑

j=1

r∑
k=1

cj,k
(z − αj)k

)
+O

(
1

(|R′| − ε)n

)
.

Proof. Notice that each
r∑

k=1

cj,k
(z − αj)k

is the principal part of the singularity at αj so

f(z)−
r∑

k=1

cj,k
(z − αj)k

is analytic at αj. Let the sum of all the principal parts be

g(z) =
s∑

j=1

r∑
k=1

cj,k
(z − αj)k

.

If we subtract the principal parts of each singularity of magnitude R, we get a function that
is analytic at all the singularities of f, and so analytic on all of |z| ≤ R, which additionally
means it is analytic on |z| < R′, the next smallest singularity of f . Finally, we finish by
either invoking Theorem 1.6 on f(z) − g(z) or by bounding the Cauchy Integral Formula
with the ML inequality as∣∣∣[zn]f(z)− g(z)

∣∣∣ = ∣∣∣∣ 1

2πi

∣∣∣∣ ∣∣∣∣∮
|z|=r

f(z)− g(z)

zn
· dz
z

∣∣∣∣ ≤ 1

2π

f(a)− g(a)

rn+1
2πr = O

(
1

rn

)
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for some a and for any r such that f(z) − g(z) is analytic on |z| ≤ r. Since f(z) − g(z) is
analytic on all |z| < R′, we can use r = R′ − ε′ for any R′ > ε′ > 0 and the bound holds,
which completes the proof.

■

We can now look at some examples and apply this theorem to generating functions. First,
consider the Fibonacci numbers given by F (z) = z

1−z−z2
. We will find an approximation

for the nth Fibonacci number. First, notice that the poles of F are at α1 = −1+
√
5

2
and

α2 =
−1−

√
5

2
, with the former being the dominant singularity. Notice that

lim
z→α1

−z

(z − α1)(z − α2)
(z − α1) =

−α1

α1 − α2

= − α1√
5
,

so the principal part of α1 is
−α1√

5
(z − α1)

−1.

Therefore, by Lemma 2.3, the principal part contributes

(−1)
−α1√

5
(α

−(n+1)
1 ) =

1√
5αn

1

to the coefficient of zn, hence

fn =
1

αn
1

√
5
+O

(
1

(α2 − ε)n

)
=

ϕn

√
5
+O

(
1

ϕn

)
,

which agrees with Binet’s formula for the nth Fibonacci number.
Next, we consider the ordered Bell numbers. Suppose we wish to rank n objects, where

some objects we like better than others, but objects are also allowed to be equally desirable.
Let bn denote the number of ways we can rank them. For instance, b2 = 3 because we can
prefer object 1 over object 2, or we can prefer object 2 over object 1, or we can like them
equally. The coefficients bn are the ordered Bell numbers, and we now find asymptotics for
this combinatorial class.

We know this is a sequence of set partitions where the order of objects in a group doesn’t
matter. Thus there is the specification

B = Seq(Set≥1(Z)).

Therefore, the exponential generating function is

B(z) =
∞∑
n=0

bn
n!
zn =

1

1− (ez − 1)
=

1

2− ez
= 1 + z +

3

2
z2 +

13

6
z3 +

75

24
z4 + · · · .

Now, the singularities of this function occur when ez = 2, or at z = log(2)+2πki, for k ∈ Z.
There is only one singularity of lowest magnitude log(2), and we can calculate its principal
part. Since

lim
z→log(2)

z − log(2)

(2− ez)
= lim

z→log(2)

1

−ez
= −1

2
,

the principal part is −1/2
z−log(2)

and from our earlier expansion of the contribution of a principal

part of a pole to coefficients, we see that this principal part contributes

1

2(log(2))n+1



SINGULARITY ANALYSIS 7

to the coefficient of zn. Furthermore, R′ in this case is
√
(log(2))2 + (2π)2 ≈ 6.32. By Theo-

rem 2.4, we have

bn = n!

(
1

2(log(2))n+1
+O((.16)n)

)
.

3. Singularity Analysis

We now turn to analyzing asymptotics for functions whose singularities are of more exotic
forms. There are many methods of doing this such as with Tauberian theorems and Dar-
boux’s methods. However, we will look at the method of singularity analysis introduced by
Flajolet and Odlyzko [2]. We will consider only functions with a single dominant singularity
since functions with multiple dominant singularities can be decomposed into this case and
then added back together.

Definition 3.1. Define a domain to be a ∆-domain at ζ if it can be written as

{z
∣∣ |z| < R, z ̸= ζ, | arg(z − ζ)| > ϕ}

for some R > |ζ| and 0 < ϕ < π
2
and call a function ∆-analytic if it is analytic in some

∆-domain.

These domains are defined in this way so that we can use countour integration on a
Hankel-type path to prove the following transfer theorems.

Theorem 3.2. Let α, β ∈ R and let f(z) be a ∆-analytic function. Then,

f(z) = O
(
(1− z)−α

)
=⇒ [zn]f(z) = O(nα−1)

and
f(z) = o

(
(1− z)−α

)
=⇒ [zn]f(z) = o(nα−1).

Proof. We use the Cauchy integral formula on the domain Γ = Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4 where

Γ1 = {z
∣∣ |z − 1| = 1

n
, | arg(z − 1)| ≥ θ}

Γ2 = {z
∣∣ |z − 1| ≥ 1

n
, | arg(z − 1)| = θ, |z| ≤ r}

Γ3 = {z
∣∣ | arg(z − 1)| ≥ θ, |z| = r}

Γ4 = {z
∣∣ |z − 1| ≥ 1

n
, | arg(z − 1)| = −θ, |z| ≤ r}

and 1 < r < R, ϕ < θ < π
2
. Note that from the definition of a ∆-domain, f(z) is analytic on

and inside this entire contour. Therefore,

|[zn]f(z)| = 1

2πi

(∫
Γ1

f(z)

zn+1
dz +

∫
Γ2

f(z)

zn+1
dz +

∫
Γ3

f(z)

zn+1
dz +

∫
Γ4

f(z)

zn+1
dz

)
≤ 1

2π

4∑
j=1

∫
Γj

|f(z)|
|z|n+1

|dz|.

Now, we evaluate the integral for each of the contour components as n → ∞. On Γ1, the
greatest value of |f(z)| is c · 1

n
for some c, so the ML-inequality gives∫

Γ1

|f(z)|
|z|n+1

|dz| ≤
(
c
n

)α(
1− 1

n

)n+1

(
2π

n

)
= O

(
n−α−1 ·

(
n

n− 1

)n+1
)
.
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Since for n > 2,(
n

n− 1

)n+1

=

(
1 +

1

n− 1

)n−1(
1 +

1

n− 1

)2

≤ e

(
1 +

1

n− 1

)2

is a decreasing function and
(

2
2−1

)2+1
= 8, for n > 2,(

n

n− 1

)n+1

≤ 8

and so ∫
Γ1

|f(z)|
|z|n+1

|dz| = O

(
n−α−1 ·

(
n

n− 1

)n+1
)

= O(n−α−1).

Now, we can evaluate the integral over Γ2 and Γ4. Due to symmetry, the same bound will

work for both contours. Setting z = 1 + teiθ

n
, we get∫

Γ2

|f(z)|
|z|n+1

|dz| =
∫ ∞

1

O

((
t

n

)−α
)∣∣∣∣1 + teiθ

n

∣∣∣∣−n−1

dt.

However, ∣∣∣∣1 + teiθ

n

∣∣∣∣ ≥ 1 +
t cos(θ)

n
,

so ∫
Γ2

|f(z)|
|z|n+1

|dz| = O(nα−1

∫ ∞

1

t−α

(
1 +

t cos(θ)

n

)−n

dt).

This integral is bounded above by some constant for any given α since for 0 < θ < π
2
, as

n → ∞, ∫ ∞

1

t−α

(
1 +

t cos(θ)

n

)−n

dt →
∫ ∞

1

t−αe−t cos θ dt

converges. Therefore, ∣∣∣∣1 + teiθ

n

∣∣∣∣ = O(nα−1).

Finally, consider Γ3. Since f(z) is bounded on the domain, we have∫
Γ3

|f(z)|
|z|n+1

|dz| = O(r−n−1 · (2πr)) = O(r−n),

which becomes exponentially small. Putting these 4 contours together, we get that [zn]f(z) =
(O(nα−1).

For the second part of the theorem, use the same contour of Γ = Γ1∪Γ2∪Γ3∪Γ4. We are
given that for any ε > 0, there exists a δ > 0 such that |z − 1| < δ =⇒ |f(z)| < ε|1− z|−α

for all z. We need to prove that for this ε > 0, there also exists a n0 such that

n ≥ n0 =⇒ [zn]f(z) < εKnα−1

for some fixed K.
Over Γ1, we can take some n0 > 1

δ
. That way, |f(z)| < ε|1 − z|−α over Γ1. Therefore,

similar to the proof of the first part of the theorem, for n > n0,∫
Γ1

|f(z)|
|z|n+1

|dz| < 8εnα−1 = o(nα−1).
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The integrals over Γ2 and Γ4 are similar to that of the first part except it is helpful to
break up the integral, ∫ ∞

1

∣∣∣∣f (1 + teiθ

n

)∣∣∣∣ ∣∣∣∣1 + t cos(θ)

n

∣∣∣∣−n

dt

into one from 1 to log2(n) and from log2(n) to ∞ and taking different bounds for each.
We get that the integral is actually o(nα−3. The integral over Γ3 is entirely analogous to
that in the first part of the theorem. Each contour’s contribution is 1

2π
o(nα−1), so we have

[zn]f(z) = o(nα−1) and we are done. ■

It is also possible to extend these transfer theorems to more classes of functions. For
example, functions of the form

(1− z)α(log
1

1− z
)β(log log

1

1− z
)γ

and large and slow varying functions are also discussed in [2].

Corollary 3.3. Let f(z) be a ∆-analytic function. Then, if f(z) ∼ (1 − z)−α for α ̸∈
{0} ∪ Z− and z → 1 is in ∆, we have

[zn]f(z) ∼ nα−1

Γ(α)
.

Proof. We know that f(z) = (1−z)−α+o((1−z)−α). First, from the Taylor series expansion,
we know that

[zn](1− z)−α =

(
n+ α− 1

n

)
=

Γ(n+ α)

Γ(α)Γ(n+ 1)
.

Now, asymptotically by Stirling’s formula, we can expand this as

[zn](1− z)−α ∼ nα−1

Γ(α)

(
1 +

α(α− 1)

2n
+

α(α− 1)(α− 2)(3α− 1)

24n2
+O

(
1

n3

))
.

Applying Theorem 3.2 to the expansion f(z) = (1 − z)−α + o((1 − z)−α), we immediately
get the result. ■

4. More examples

Now we revisit the Motzkin numbers and use the method of singularity analysis to get
sharper bounds on the coefficients of the generating function than with the elementary
techniques of the first section. Recall that the Motzkin numbers satisfy

M(z) =
1− z −

√
(1 + z)(1− 3z)

2z
.

This has a dominant singularity at z = 1
3
and a secondary singularity at z = −1. Taking a

branch cut along the real axis, we know that M(z) is ∆-analytic. We can rewrite M(z) as

M(z) = −1

2
+

1

2z
−

√
1 + z

2z
(1− 3z)1/2.
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The series expansion as z → 1
3
of

√
1+z
2z

is just the Taylor series,

M(z) = 1−
(√

3 +
7

8

√
3(1− 3z) +O((1− 3z)2)

)
(1− 3z)1/2

= 1−
√
3(1− 3z)1/2 − 7

8

√
3(1− 3z)3/2 +O((1− 3z)5/2).

From Corollary 3.3, we can write the asymptotic expansion of [zn](1− 3z)1/2 as

[zn](1− 3z)1/2 ∼ n−(1/2)−1

Γ(−1/2)
3n =

3n√
4πn3

.

In this case, we will need another term of the expansion, so using the expansion we got with
Stirling’s formula, we have

[zn](1− 3z)1/2 =
n−(1/2)−1

Γ(−1/2)
3n
(
1 +

(−1/2)(−3/2)

2n
+O

(
1

n2

))
=

3n√
4πn3

(
1 +

3

8n
+O

(
1

n2

))
Therefore, [zn]M(z) has a general asymptotic expansion of

[zn]M(z) =
3n√
4πn3

·
√
3

(
1 +

3

8n
+O

(
1

n2

))
− 3nn−5/2

4
√
π/3

· 7
8

√
3

(
1 +O

(
1

n

))
+O((1− 3z)5/2)

=

√
3

4πn3
3n
(
1− 15

16
n+O

(
1

n2

))
.

This is a much better bound than the one of 3n found without singularity analysis in the in-
troduction and can easily be improved arbitrarily much by using more terms of the expansion

of
√
1+z
2z

and [zn](1− 3z)1/2.
Our last example is permutations with cycles of odd length. This combinatorial class P

has specification

P = Set(Cycodd(Z),

so we have the exponential generating function

P (z) = elog(
1+z
1−z

)/2 =

√
1 + z

1− z
.

This has two dominant singularities at z = 1 and z = −1. While we have not considered
two dominant singularities in this paper yet, it is easy to show that singularity analysis still
works if P (z) is analytic on a domain that is the intersection of two rotated ∆-domains each
about one of the singularities. A proof of this fact can be found in [3]. This function, P (z),
clearly does satisfy the condition, so asymptotics for [zn]P (z) can then be found by summing
the results of normal singularity analysis for each of the dominant singularities. First, as
z → 1, we have

P (z) =
1√
1− z

(
21/2 − 2−3/2(1− z)− 2−9/2(1− z)2 +O((1− z)3)

)
and as z → −1,

P (z) =
√
1 + z

(
2−1/2 + 2−5/2(1 + z) +O((1 + z)2)

)
.
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By singularity analysis, z = 1 contributes to [zn]P (z) a total of

21/2√
πn

(
1− 1

8n
+

1

128n2

)
+

2−3/2

√
πn3

(
1

2
+

3

16n

)
− 2−9/2

√
πn5

(
3

4

)
+O(n−7/2)

and z = −1 contributes

−(−1)n2−1/2

√
πn3

(
1

2
+

3

16n

)
+

2−5/2

√
πn5

(
3

4

)
+O(n−7/2).

Summing these, we have

[zn]P (z) =
21/2√
πn

− (−1)n2−3/2

√
πn3

− 9 · 2−13/2

√
πn5

+O(n−7/2).
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