
E29: On the solution of Diophantine problems in whole numbers
Euler, Sarah Fujimori

When we encounter an equation of the form ax

2 + bx + c = y

2, we often find
that there are no solutions. For example, since squares are always 0 or 1 mod
3, the equation 3x2 + 2 = y

2 has no solution. However, if we can come up with
one solution to this equation, then Euler shows that there are infinitely many
other solutions that follow from that one.

In this paper, Euler excludes cases where a is equal to a square, since it is
more di�cult to make ax

2 + bx + c equal to a square when it is already very
close to one.

1. FINDING ANOTHER SOLUTION

Let the ordered pair (n,m) satisfy the equation ax

2 + bx+ c = y

2. We set the
next solution equal to (↵n+�+�m, �n+✏+⇣m). We plug these values into the
ax

2+ bx+ c = y

2 and obtain the following expression on the left side, organized
by powers of n and m:
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On the right side, we have:
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When we set these two expressions equal to each other, we can compare
coe�cients and obtain the following system of equations:
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We start at the fourth equation, since it is the most simple. Dividing both
sides by 2⇣ gives us � = a↵�

⇣

. Next, in the last equation, we divide both sides

by 2⇣, giving us ✏ = 2a��+b�

2⇣ .
We now use our expression for � to simplify the first equation:
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We multiply by ⇣

2 to get rid of the fraction, and then rearrange and group
terms to factor:
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From this equation we see that one of these two quantities must be 0. Specif-
ically, ↵2 = ⇣

2 or ⇣

2 = a�

2. However, we mentioned earlier that we exclude
cases where a is a perfect square; therefore, it is impossible for a�2 to be equal
to a square. Thus, we take ↵2 = ⇣

2 to be true, and if we square root both sides,
we have ↵ = ⇣.

If we substitute this value into our expression for �, then we get � = a�.
We now substitute all of these values into the second equation:
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To clear denominators, we multiply by ↵, and then rearrange and group
terms like before:
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From this equation, we again obtain two possibilities: either ↵2 = a�

2 or b↵ �
2a� � b = 0. As before, we have excluded cases where a is a square, so a�

2

cannot be a perfect square. Solving the second equation for � gives � = b(↵�1)
2a .

We now simplify our expression for ✏:
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Now, we work with the third equation. We start by separating the terms

with c from the terms without it:
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We now substitute all of our values into this equation:
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We add the fractions using the common denominator 4a:
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We are solving for values of ↵,�, �, etc., not a, b, c, so we conclude that ↵

2 �
a�

2 � 1 = 0. If we solve for ↵, we get that ↵ =
p
a�

2 + 1.
We now make new variables p and q such that q = sqrtap

2 + 1. Then,
↵ = q,� = b(q�1)

2a , � = p, � = ap, ✏ = bp

2 , and ⇣ = q. Substituting these values
into our original ordered pair, we obtain the following theorem:

Theorem 1 If the solution (n,m) satisfies the equation ax

2+ bx+ c = y

2
, then

the solution (qn+ bq�b

2a + pm, apn+ bp

2 + qm) does too.

2. GENERATING A SEQUENCE OF SOLUTIONS

Using Theorem 1, we can generate an infinitely long sequence of solutions.
To do this, we treat qn+ bq�b

2a + pm as the new value of n, and apn+ bp

2 + qm

as the new value of m.
Therefore, our next value of n would be q(qn+ bq�b

2a + pm)+ bq�b

2a + p(apn+
bp

2 + qm). Simplifying,
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To make this expression look a little nicer, we can use the fact that q2 = ap

2+1:
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We do the same for m:
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If we want, we can extend these sequences to be as long as we want. Below, we
list the first few solutions that are generated using this method:

1.(n,m)

2.(qn+ pm+ b(q�1)
2a , apn+ qm+ bp

2 )

3.(2q2n+ 2pqm+ b(q2�1)
a

� n, 2apqn+ 2q2m+ bpq �m)

4.(4q3n+4pq2m+ b(4q3�3q�1)
2a �3qn�pm, 4apq2n+4q3m+2bpq2�apn�3qm� bp

2 )

5.(8q4 + 8pq3m+ 4bq2(q2�1)
a

� 8qn2 � 4pqm+ n, 8apq3n+ 8q4m+ 4bpq3 �
4apqn� 8q2m� 2bpq +m)

Let the kth x value be x

k

, and let the kth y value by y

k

. We notice by
looking at these terms that x3 = 2qx2�x1+

b(q�1)
a

. We can generalize to x

k+2 =

2qx
k+1 �x

k

+ b(q�1)
a

because the theorem we developed is also a recursion, and
we can treat any term as n and use our method to generate the next one.
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Similarly, for y values, y
k+2 = 2qy

k+1 � y

k

.
We see from looking at these x and y values that not all of these solutions

are whole number solutions. In the values of y, the term bp

2 shows up every
other value, which means that at least every other y value is a whole number.

Looking at x values, the term b(q�1)
2a or some multiple of it shows up in every

other value, and in the values it does not appear in, there is a multiple of b(q2�1)
a

.
We know that the former is not always an integer, and will be an integer when
2a divides bq � b. On the other hand, the latter is always an integer, because if
we make the substitution q

2 = ap

2 + 1, it becomes equal to bp

2. Therefore, at
least every other x term is an integer.

Additionally, the x terms that are guaranteed to be integers and the y terms
that are guaranteed to be integers correspond, so we are guaranteed that at
least every other ordered pair will be a whole number solution.

3. FINDING POSITIVE p, q

It remains now to find values of p and q such that q

2 = ap

2 + 1. We can see
that one solution would be p = 0, q = 1. However, if we substitute these values
into the sequences x

k

and y

k

, then both of the sequences contain only n’s and
m’s, i.e. there are no new values. Consequently, we wish to find values of p and
q that are positive integers.

Euler cites a special method for finding these values, which was created by
Pell and Fermat and explained by Wallis. Therefore, he does not explain or
prove it in the paper, but shows an example of how to use it, since it is useful
in generating this sequence of solutions.

As an example, let q

2 = 5p2 + 1. Then q =
p
5p2 + 1. Since sqrt4p2 <p

5p2 + 1, we know that q > 2p, so we set it equal to 2p+ a.
Now, we solve for p by equating the di↵erent expressions for q:

q = 2p+ a =
p

5p2 + 1

We square both sides and then move all terms to one side:

4p2 + 4ap+ a

2 = 5p2 + 1
p

2 � 4ap+ 1� a

2 = 0

Now, we employ the quadratic formula to express p in terms of a:

p = 4a±
p
16a2+4a2�4

2 = 4a±
p
20a2�4
2 = 2a±

p
5a2 � 1

Note that there are two solutions to this equation. We take the one with plus,
since we want positive integer solutions.

Next, we repeat the process. We know 2a+
p
5a2 � 1 > 2a+

p
4a2 = 4a, so

p > 4a, so then we set p equal to 4a+ b.
Again, we set the two known expressions of p equal to each other and solve

for b:
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p = 4a+ b = 2a+
p
5a2 � 1

2a+ b =
p
5a2 � 1

4a2 + 4ab+ b

2 = 5a2 � 1
a

2 � 4ab� 1� b

2 = 0
a = 4b±

p
16b2+4b2+4

2 = 4b±
p
20b2+4
2 = 2b±

p
5b2 + 1

Again, we take the greater solution only because we seek positive integer solu-
tions. Therefore, a = 2b+

p
5b2 + 1.

This is what we have been looking for, because now we can set b equal to
0, making a a positive integer. This gives a = 1, p = 4, and q = 9. Indeed,
9 =

p
5 ⇤ 42 + 1 =

p
81.

we can use this method for any value of a, and in fact, this method will give
us the smallest positive integer solution for p and q (If we use our method of
generating a sequence of solutions, then we can obtain higher values).

4. APPROXIMATING SQUARE ROOTS

If we manipulate the equation q

2 = ap

2 + 1 a bit to obtain the value of a, we

will get that a = q

2�1
p

2 . Then, if we square root both sides,
p
a =

p
q

2�1
p

.

Given a value of a, we can find an infinite number of (p, q) that satisfy this

condition. As p and q approach infinity,
p

q

2�1
p

will approach q

p

, so a will be

approximately q

p

. This means that we can use both the method mentioned

earlier and our sequence of solutions to ax

2 + bx+ c to approximate
p
a.

Let us first work with our previous example where a = 5. Based on the main
theorem of our paper, p

k

= 2q(p
k�1)� p

k�2, and q

k

= 2q(q
k�1)� q

k�2. (Here,
q is the value that we found using Pell and Fermat’s method, namely 9). So,
p

k

= 18(p
k�1)� p

k�2, and q

k

= 18(q
k�1)� q

k�2

We list out the di↵erent values of p and q. We know that p = 0, q = 1 is a
solution, as well as p = 4, q = 9. Therefore, we can generate an infinitely long
sequence of values for p and q using our method. The values we get for p are:

0, 4, 72, 1292, 23184, 416020 · · ·

And the values we get for q are:

1, 9, 161, 2889, 51841, 930249 · · · .

If we divide the values of q by the corresponding values of p, q

p

gets closer

to
p
a. Taking the last p and q values that we found, 416020 and 930249, then

we get q

p

⇡ 2.23606797750. In comparison,
p
5 = 2.236067977749, which shows

that we have accuracy up to 10 digits! Not bad.

5. APPLICATION TO TRIANGULAR NUMBERS

Next, Euler applies this formula to find the triangular numbers that are squares.
The xth triangular number is given as x

2+x

2 , or 2x2+2x
4 if we multiply the top

and bottom by 2. We see that if 2x2+2x
4 is a perfect square, then 2x2 +2x must
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also be a square. We then solve for values of x that will make this expression
a perfect square, and exclude the odd solutions so that the resulting triangular
number will actually be an integer.

By comparing the expression with the generalized form ax

2 + bx+ c, we see
that a = 2, b = 2, and c = 0. Since c = 0, we know x = 0 is a solution, so we
set n = 0.

We now find the values of p and q: if q =
p
2p2 + 1, then q > p, so we let

q = p+ a and solve for p in terms of a:

p+ a =
p

2p2 + 1

We square both sides and then move all terms to one side:

p

2 + 2ap+ a

2 = 2p2 + 1
p

2 � 2ap+ 1� a

2 = 0

Now, we use the quadratic formula to find p:

p = 2a±
p
4a2+4a2�4

2 = 2a±
p
8a2�4
2 = a±

p
2a2 � 1

As before, we take the larger solution with + instead of�, because we are looking
for positive integer solutions. Since the expression for p does not contain some
form of

p
2k2 + 1, we repeat the process:

Since p > 2a, we set it equal to 2a+ b. We now solve for b:

2a+ b = a+
p
2a2 � 1

a+ b =
p
2a2 � 1

a

2 + 2ab+ b

2 = 2a2 � 1
a

2 � 2ab� 1� b

2 = 0
a = 2b+

p
4b2+4b2+4

2 = 2b+
p
8b2+4
2 = b+

p
2b2 + 1

Now, we can set b = 0, which gives a = 1, p = 2, and q = 3. Using these
values, our recursions for x and y values are x

k

= 6x
k�1 � x

k�2 + 2 and y

k

=
6y

k�1 � y

k�2. Additionally, by substituting numbers into the formula, we get
that the next solution is (1, 2).

If we continue generating solutions, the values of x will be:

0, 1, 8, 49, 288, 1681, 9800, · · ·

The values of y will be:

0, 1, 6, 35, 204, 1189, 6930, · · ·

Finally, we exclude the odd values of x, since 2x2+2x
4 wouldn’t be a whole num-

ber.

6. POLYGONAL NUMBERS IN GENERAL
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After applying his method to triangular numbers, Euler generalizes to polyg-
onal numbers. The xth polygonal number of side s is given by the expres-

sion (s�2)x2�(s�4)x
2 . Like before, we conclude that if this is a square, then

2(s� 2)x2 � 2(s� 4)x is also a square. We see that (0, 0) is a solution, and by
comparing this to the general form ax

2+bx+c, we let a = 2(s�2), b = �2(s�4),
and c = 0.

By substituting our values into the formula, the next values of x are:

0, �(s�4)
2(s�2) (q � 1), �(s�4)

s�2 (q2 � 1), · · ·

where our usual definition of p and q applies, i.e. 2(s� 2)p2 + 1 = q

2.
Unfortunately, if s > 4, then all of these terms are negative except for 0.

However, we can replace q with �q here because 2(s � 2)p2 + 1 = q

2 will still
hold. Then, every other term would become positive.

This gives us the following y values:

0, (s� 4)p, 2(s� 4)pq, · · ·

We can then solve for the values of p and q given s and substitute them into
these sequences.

In the case where 2(s�2) is a perfect square, Euler claims that the polygonal
numbers of side s are either all squares, or only a few of them are squares. For
example, if s = 4, the square numbers are simply x

2, so all of them are squares.
If s = 10 and 2(s� 2) = 16, then only the values 0 and 1 work for x.
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