
Euler’s Work on Fermat’s Last Theorem

Karthik Balakrishnan

April 18, 2018

Lemma 1
The product of distinct primed can never be a power of any kind (for example a square).

Proof. This lemma has already been proven by Fermat, so Euler didn’t feel like proving it. It
is a trivial proof that stems from the Fundamental Theorem of Arithmetic.

Lemma 2
If a2 + b2 = c2 such that a and b are co-prime. Then we can represent a = p2 − q2, and b = 2pq,
where p and q are co-prime. If p is odd then q is even and vice versa.

Proof. Because a2 + b2 is a square, we set its root equal to a+ bp
q where q

p is expressed in the
smallest terms. Thus we get . . .

a2 + b2 = a2 +
2abq

p
+

b2q2

p2

. . . and can then say . . .
a : b = (p2 − q2) : 2pq.

The integers p2− q2 and 2pq are either co-prime or have a common divisor of 2. In the former,
we have completed the construction of the three terms and proven the lemma. In the latter,
2|(p2 − q2) = (p− q)(p+ q) meaning that either (p− q) or (p+ q) is even. Quickly we realize that
since both p and q are positive integers if one of the two factors of p2 − q2 is divisible by 2, then
both must be divisible by 2 due to parity. Therefore, we can say p + q = 2s and p − q = 2s and
then manipulate to get p = r+ s and q = r− s where r and s are co-prime. Substituting this into
b = 2pq, we get b = 2(r+ s)(r− s) = 2(r2 − s2) and a = p2 − q2 = 2(2rs). Thus we see that when
both numbers are even, we have a non primitive pythagorean triple which can be reduced to its
primitive case where one term is odd and the other is even.

Corollary 1
If the sum of two mutually primitive squares is a square, it is necessary that the one square is even,
the other is odd. It follows that the sum of two odd squares is not a square.

Corollary 2
If a2 + b2 is a primitive square, one of the numbers is odd and the other is even. The odd can be
written as a = p2 − q2 and the even can be expressed as b = 2pq.

A Stronger Version of Fermat’s Last Theorem for N=4
There are no three integers x, y, and z such that xyz 6= 0 and x4 + y4 = z2.

Proof. Proof by contradiction. Assume that the hypothesis is true for integers x, y, and z We
begin by invoking corollary 2, which states that if . . .

(x2)2 + (y2)2 = (z2)
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. . . then we can write, without loss of generality, that . . .

x2 = a2 − b2

y2 = 2ab.

Where a and b are relatively prime numbers. Now we can take the first statement and rewrite it
as another Pythagorean Triple . . .

x2 + b2 = a2

. . . and once again we can say that . . .
b = 2cd

x = c2 − d2

a = c2 + d2

Now notice that y2 = 2ab. Using our new equations we can rewrite the expression as y2 =
2(c2+d2)(2cd) = 4cd(c2+d2). Since a and b are relatively prime, cd must be some square number
e2 and c2 + d2 must be some square number f2. If cd = e2, and c and d are co-prime, c must be
some square g2 and d = h2. Plugging this in . . .

c2 + d2 = f2 → (g2)2 + (h2)2 = f2.

We have arrived to an equation of the same form as our initial equation and f2 is strictly less
than z2. We can repeat these same steps again and again, creating infinitely smaller cases. But
alas, there are only a finite amount of integers below z2 and above 0. Thus we have reached a
contradiction, and by infinite descent our assumption must be false.

Another Impossible Diophantine Equation
There are no three integers x, y, and z such that xyz 6= 0 and x4 − y4 = z2.

Proof. Proof by Contradiction. Assume that we do have three numbers of the form mentioned
above, we can rewrite the above to give us . . .

x4 = y4 + z2.

Now when we invoke corollary 2, we get one of two cases:

Case 1
Since (x2)2 = (y2)2 + z2, we can say . . .

z = 2mn, y2 = m2 − n2, x2 = m2 + n2

.
If so, we can multiply x2 and y2 and rewriting the product we get . . .

m4 − n4 = (xy)2.

Because x, y < z, xy < z2, meaning that we have generated three numbers of the same form as
our initial case that are strictly smaller than the original. We can do this process infinitely, but
between z and 0, there are only finitely many integers. We have reached a contradiction and our
assumption must be false.

Case 2
Since (x2)2 = (y2)2 + z2, we can say . . .

z = m2 − n2, y2 = 2mn, x2 = m2 + n2.

From this we can write (y2 )
2 as . . . (y

2

)2

=
mn

2
.
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From corollary 2, we know that either m or n is even. Without loss of generality, we can say that
m
2 = k. Since 2mn must be a square number and n is relatively prime to m and m

2 , we can say
that n = a2 for integer some a and m

2 = b2 for some integer b. Plugging these values into our
equation for x2 we get . . .

x2 = n2 +m2 = a4 + 4b4.

We can rewrite this equation and invoke corollary 2 to get . . .

x2 = (a2)2 + (2b2)2

a2 = c2 − d2, 2b2 = 2cd, x = c2 + d2

. . . therefore b2 = cd meaning that c = e2 and d = f2 for some integers e and f . Plugging this into
our equation to the equation for a2 we get . . .

e4 − f4 = a2.

Thus we have constructed a smaller case of the same form and can do this infinitely. But there
are only finitely many triplets of numbers under the original and above 0. We have reached a
contradiction and our assumption must be false.
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