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Leohnard Euler maintains himself as one of the great mathematicians to have ever lived. Throughout his
work, we see he has pioneered a multitude of mathematical sciences and fields, including astronomy, number
theory, differential calculus, upon many more. Here, we seek to look into his specific papers denoted by their
Enestrom number, E448 to analyze some of his work on Elliptic Integrals, 30 years apart.

To start off, we will look into Euler’s attempts to evaluate a good approximation of the arc length
of an ellipse, and explore different more modern methods to accomplish the same task using simpler mathe-
matics. In his paper E448 he develops a series that is shown to quickly converge and provides the standard
approximation for a ellipse’s perimeter that is generally used today. Euler starts off by saying that numerous
mathematicians had concluded that there was no simple way to express the perimeter of an ellipse.

1 E448 Rectification of an Ellipse
§1 First, assume the basic equation for an ellipse with semi axises b and a
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Euler provides the substitution
x2

a2
=

1 + z
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1− z
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Using this, we seek to find the formula for arc length using these substitutions or
∫
ds where ds in this case

is in terms of this parametric variable z, or in other words ds =
√

dx
dz

2
+ dy

dz
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Solving, we get
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which, with a little manipulation yields

s =
1

2
√
2

∫ 1

−1

√
a2 + b2 − (a2 − b2)z

1− z2
dz

where, when the parametric is evaluated from the bounds −1 to 1, and the constant is factored out, yields
the perimeter of the whole ellipse.

§2 Following this, Euler defines 2 new variables c and n as

c2 = a2 + b2 n =
a2 − b2

a2 + b2

which, when substituted back into the formula for s, yields

s =
c

2
√
2

∫ 1

−1

√
1− nz√
1− z2

dz

Through the binomial formula, (1 + x)k = 1+ kx+ k(k−1)
2! x2 + k(k−1)(k−2)

3! x3... where k = 1
2 and x = nz we

see that √
1− nz = 1− 1

2
nz − 1 · 1

2 · 4
n2z2 − 1 · 1 · 3

2 · 4 · 6
n3z3

When we plug in this expanded formula into the integral, we find that the fraction and the power of n can
be factored out, leaving just the powers of z Integrating a few of the first couple terms yields∫ 1

−1

dz√
1− z2

= π

∫ 1

−1

zdz√
1− z2

= 0

A bit of further investigation, we find that we can evaluate all the other values of this integral at any power
of z given by λ through using the 2 values given above and the formula∫ 1

−1

zλ+2

√
1− z2

dz =
λ+ 1

λ+ 2

∫ 1

−1

zλ√
1− z2

dz

§3 Using the above formula, we see that all odd powers of z would yield 0 so we only need to consider the
even powers of z. Evaluating with the above formula, we get that the first few iterations of the even powers
of yields z, ∫ 1

−1

dz√
1− z2

= π

∫ 1

−1

z2dz√
1− z2

=
1

2
π

∫ 1

−1

z4dz√
1− z2

=
1 · 3
2 · 4

π

∫ 1

−1

z6dz√
1− z2

=
1 · 3 · 5
2 · 4 · 6

π

Evidently, each term carries a π so we can factor that out. From the last simplified formula for s, if we plug
in the constant coefficients in both the expansion of the binomial formula, and the integrals above

s =
cπ

2
√
2
(1− 1 · 1

2 · 4
· 1
2
n2 − 1 · 1

4 · 4
· 3 · 5
8 · 8

n4...)

when you simplify with the previously defined variables c and n the sequence yields the infinite series for
the perimeter of an ellipse, which provides a relatively good approximation, even with only the first 5 terms
converges rather quickly. For instance, if we take only the first term we get the popular approximation for
the perimeter of an ellipse

π
√
2(a2 + b2)

For instance, if we use a = 5 and b = 4 then we get 28.36.
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2 Alternate way to derive Perimeter of an Ellipse
As previously stated, we are trying to find the perimeter of the ellipse shown above, with the semi-axises b
& a. First, take the parametric equations for the equation of an ellipse

x = acos(θ) y = bsin(θ)

Using the formula for arc length, ∫
ds =

∫ √
(
dx

dθ
)2 + (

dy

dθ
)2dθ

p = 4

∫ π
2

0

√
a2sin2θ + b2cost2θdθ

which when simplified and using ε =
√
1 = b2

a2 we get

4a

∫ π
2

0

√
1− ε2cos2θdθ

This, is what we know as an elliptical integral, which does not have an established way to be evaluated using
simple functions. First, notice that using the binomial formula, we get denote that

√
1 + x = 1 +

x

2
+

∞∑
n=2

(−1)n+11 · 3 · 5...(2n− 3)xn

2nn!

Through setting x equal to the corresponding part in the above elliptical integral, we can express this root
as √

1− ε2cos2θ = 1− ε2cos2θ

2
−
∞∑
n=2

1 · 3 · 5...(2n− 3)ε2ncos2nθ

2nn!

Notice that since cosθ is bound between 0 and 1, this series always converges for all values of θ Using the
previously established formula for the elliptical integral, we can derive that

p = 4a

∫ π
2

0

1− ε2cos2θ

2
−
∞∑
n=2

1 · 3 · 5...(2n− 3)ε2ncos2nθ

2nn!
dθ

integrating everything termwise, we get

p = 4a

(
π

2
− ε2

2
(
1

2
· π
2
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∞∑
n=2

(1 · 3 · 5...(2n− 3)ε2n)2

(2nn!)2(2n− 1)
· π
2

)

which when simplified, also yields the formula

p = 2πa

(
1− (

1

2
)2
ε2

1
− (

1 · 3
2 · 4

)2
ε4

3
...

)
yielding the same result as Euler’s derivation.
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