
THREE SQUARES
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1. Background

Euler initially was searching for numbers x, y, and z such that x + y + z, xy + yz + zx,
and xyz were all squares, before settling on the subcase where x, y, and z were all squares.
In this scenario, xyz is automatically a square, and we can rewrite the condition: we want
to find x, y, and z such that

x2 + y2 + z2 = P 2

x2y2 + y2z2 + z2x2 = Q2

First, we can search for a nice form for x, y, and z satisfying the first condition. We are
initially reminded of the generating formula for Pythagorean triples:

a = m2 = n2

b = 2mn

c = m2 + n2

.
We can emulate this formula here as follows:

x = p2 + q2 − r2

y = 2pr

z = 2qr

P = p2 + q2 + r2

.
We can now plug this form into the second condition:

x2(y2 + z2) + y2z2 = Q2

(p2 + q2 − r2)24r2(p2 + q2) + 16p2q2r4 = Q2

Q2

4r2
= (p2 + q2 − r2)2(p2 + q2) + 4p2q2r2

Thus the right hand side must also be a square.
However, from this equation, the only general solution that can be found occurs when

r2 = p2 + q2, which yields x = 0 while (y, z, P ) is some Pythagorean triple.
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2. Substituting for r

Euler then picks the ingenious substitution r = p− nq, yielding

Q2

4(p− nq)2
= (q2 + 2pnq − n2q2)2(p2 + q2) + 4p2q2(p− nq)2

Q2

4q(p− nq)2
= (2pn+ (1 − n2)q)2(p2 + q2) + 4p2(p− nq)2

Because the left side of this equation must be a square, set it as R2. Expanding the right
side gives

R2 = 4(n2 + 1)p4 − 4n(1 + n2)p3q + (1 + 6n2 + n4)p2q2 + 4n(1 − n2)pq3 + (1 − n2)2q4

For this to be the square of a quadratic, the first and last terms must be squares. In this
case, the last term is a square, so we can use it along with the third and fourth terms to
create a new set of conditions.

Taking R = αp2 + 2npq + (1 − n2)q2 gives

R2 = α2p4 + 4nαp3q + (4n2 + 2α(1 − n2))p2q2 + 4n(1 − n2)pq3 + (1 − n2)2q4

with the final two terms equal to those of the original representation. The middle terms

are equated when 4n2 + 2α(1 − n2) = (1 + 6n2 + n4), or α = (1+n2)2

2(1−n2)
.

We can now equate these two representations of R2; the final three terms cancel, yielding

4(n2 + 1)p4 − 4n(1 + n2)p3q = α2p4 + 4nαp3q =
(1 + n2)4

4(1 − n2)2
p4 +

2n(1 + n2)2

1 − n2
p3q

4p4 − 4np3q =
(1 + n2)3

4(1 − n2)2
p4 +

2n(1 + n2)

1 − n2
p3q

4(1 − n2)2(4p4 − 4np3q) = (1 + n2)3p4 + 8n(1 − n4)p3q

4(1 − n2)2(4p− 4nq) = (1 + n2)3p+ 8n(1 − n4)q

(16 − 32n2 + 16n4)p− (16n− 32n3 + 16n5)q = (1 + 3n2 + 3n4 + n6)p+ (8n− 8n5)q

(15 − 35n2 + 13n4 − n6)p = (24n− 32n3 + 8n5)q

(n4 − 10n2 + 5)p = 8n(1 − n2)q

p

q
=

8n(1 − n2)

(n4 − 10n2 + 5)

The easiest way to find solutions from this is to set p and q directly equal to the numerator
and denominator on the right side (and then scale afterward).

We then have
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p = 8n(1 − n2)

q = n4 − 10n2 + 5

r = p− nq = n(3 + 2n2 − n4)

.
These representations, along with the formulas

x = (p2 + q2 − r2)

y = 2pr

z = 2qr

allow us to find triples that satisfy these equations by plugging in various values of n

3. Examples

for n = 2, we get

p = 8n(1 − n2) = −48

q = n4 − 10n2 + 5 = −19

r = p− 2q = −10

x = (p2 + q2 − r2) = 2565

y = 2pr = 960

z = 2qr = 380

Because we can scale, dividing by 5 gives (x, y, z) = (513, 192, 76) From this, we then get
P = 553, Q = 106932.

For n = 3, we get (p, q, r) = (−192,−4,−180), which can be reduced to (48, 1, 45). From
here we get (x, y, z) = (280, 4320, 90) which in turn can be reduced to (28, 432, 9), which is
the lowest solution we can obtain using this method.

4. Introducing m

To go further, we take the case where n2 + 1 is a square, and set m as its square root.
We then get the following equation:

R2 = 4m2p4 − 4nm2p3q + (m4 + 4n2)p2q2 + 4n(1 − n2)pq3 + (1 − n2)2q4

Now, in addition to using the last three terms, we can also use other combinations:

4.1. First, Second, and Last Terms. Taking the first, second, and last terms, we get
R = 2mp2 −mnpq + (1 − n2)q2.

Equating the two forms of R2 gives us

p

q
=

2n(4 + 2m− 2m2 −m3

4 + 8m− 5m2 − 4m3

Setting a = 2, b = 1 gives the final values for 196, 693, 528, which are much larger than
the values from the previous method
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4.2. First, Fourth, and Last Terms. Taking the first, fourth, and last terms, we get
R = 2mp2 + 2npq + (1 − n2)q2.

Equating and moving terms gives

p

q
=

4m− 4mn2 −m4

4mn(2 +m)
which simplifies to

4 − 2m−m2

4n
Plugging in a = 2, b = 1 gives values 108, 7, 336 for x, y, z. Here P is larger than in the

above case, and Q is smaller.

4.3. First Three Terms. Equating the first three terms gives us R = 2mp2 − mnpq +
m4+3n2

4m
q2

From which we get

p

q
=
m8 − 2m4n2(n2 − 3) + n4(n2 − 3) − 16m2(n2 − 1)2

8 +m4 − 5n2 − n4

There is no simpler result that can be obtained from this equation. Thus, these are the
smallest values that can be extrapolated from this method.
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