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1 Introduction
The obvious first question is what is the complex exponential function. It was discovered by Euler
and turns out to be exactly what its name suggests- an exponential function for complex numbers.
That is, it is ez where z is some complex number.

2 Euler’s Formula
The most common example of the importance or usefulness of the complex exponential function
comes in the form of Euler’s formula. It is:

eiθ = cos(θ) + i sin(θ)

This property is often used in many contexts and also helps make complex numbers easier to
multiply and divide as we will later see. However, first let us consider some of the proofs for
Euler’s formula.

2.1 Taylor Series’s Proof
This proof is one of the most well known due to it being Euler’s proof. For this proof, we recall
that a Taylor series centered around 0, also known as a Maclaurin Series, is nothing but

f(x) = f(0) + xf ′(0) +
x2

2!
f ′′(0) +

x3

3!
f ′′′(0)

We can write our the Taylor expansion for the exponential function.

ex = 1 + x+
x2

2!
+
x3

3!
+ ...

If we let x be iy, we have:

eiy = 1 + iy +
(iy)2

2!
+

(iy)3

3!
+ ...

We know that i2 = −1, i3 = −i, i4 = 1, and so on. As a result, our terms either are a multiple of
i or not. We can separate eiy into our real and imaginary parts.

eiy = (1− y2

2!
+
y4

4!
− ...) + i(y − y3

3!
+
y5

5!
− ...)

Now we can note that the real part of this series is nothing but the Taylor expansion for cos(y)
and the imaginary part is just i times the Taylor expansion for sin(y). So that means that

eiy = cos(y) + i sin(y)

our desired equation and we have completed our first proof for Euler’s formula.
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2.2 Proof by Constant Derivative
In this proof we start with the following function of θ:

f(θ) = e−iθ(cos(θ) + i sin(θ))

If we are able to show that this function is always equal to 1, we will be able to prove Euler’s
formula. We can start to show this by taking the derivative of f(θ) to get:

f ′(θ) = −ie−iθ(cos(θ) + i sin(θ)) + e−iθ(− sin(θ) + i cos(θ))

All the terms on the right hand side cancel out, leaving 0. That is, f ′(θ) = 0. If the derivative of
the function is 0, we know that the function itself must equal a constant. That is, f(θ) = k for
some constant k for all θ. Since this is true for all θ, we can find the function value for any θ and
that will be our function value for all θ. Letting θ = 0, we have:

f(0) = e−i∗0(cos(0) + i sin(0) = 1

Therefore, we have that in general:

f(θ) = e−iθ(cos(θ) + i sin(θ)) = 1

Rearranging the latter half of the equations, we have:

eiθ = cos(θ) + i sin(θ)

And we have completed our second proof for Euler’s formula and only our third proof remains.

2.3 Proof via Differential Equation
For this proof, we can start by trying to relate a function to its derivative in order to solve
the resulting differential equation to find an equivalent function. Let us start with the following
function:

y = cos(x) + i sin(x)

We can take the derivative of both sides to learn that

dy

dx
= − sin(x) + i cos(x)

We can note that the expression for the derivative, is nothing but:

dy

dx
= − sin(x) + i cos(x) = i(cos(x) + i sin(x)) = iy

This creates our differential equation:
dy

dx
= iy

While for those who have worked with DEs often, the solution may become readily apparent, we
can also separate the variables to solve this equation. By rearranging, we have:

1

y
dy = idx

Taking the integral of both sides, we obtain

ln(y) = ix

By raising both sides to e, we have that y = eix and equating the expressions we have for y, we
have:

eiy = cos(y) + i sin(y)

completing our final proof for Euler’s formula.
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Figure 1: This complex plane graph shows how we can write the real and imaginary parts of a
complex numbers in terms of the angle theta and the magnitude of z (i.e.|z|, also written as r).

3 Interesting Resulting Properties
The complex exponential function makes it much easier to work with complex numbers, to find
roots of equations, and to derive trigonometric identities.

3.1 Complex Numbers
To start, consider a complex number z = x+ iy. If we draw it on the complex plane as in Figure
1, we can let theta be the angle z makes with the real axis or x-axis. Projecting z on to the real
and imaginary axis, we have that x = |z| cos(θ) and y = |z| sin(θ) where |z| is the magnitude of
the complex number, or

√
x2 + y2. Then we can write z as:

z = x+ iy = |z| cos(θ) + i|z| sin(θ) = |z|eiθ

by using Euler’s formula on that last step. This allows us to write every complex number as a
constant times complex exponential function. This readily reveals several tricks for dealing with
complex numbers including allowing for easier multiplication and division of complex number.

3.2 Roots
This property of complex numbers which allow them to be written as a magnitude times an
exponential function also makes it easy to find roots. This is because the nth power of a complex
number can be written as:

zn = rneinθ

Therefore, say we are trying to find the roots of z3 = 1. We can write this as:

z3 = r3e3iθ = 1e0i

This easily reveals that our solutions have r = 1 and 3iθ = 0 + 2πk With k = 0,1,2 we get our
three unique solutions for θ = 2πk

3 Similarly, we have our solutions for any equation zn = 1 to be:

z = e
2πk
n i

for k = 0, 1, 2, ..., n-1. This is a nice compact formula for roots of 1.

3.3 Trigonometric Identities
Due to the properties of exponential functions. We also know that:

(eiθ)n = eiθn
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This is also known as DeMoivre’s formula. From Euler’s formula, we can write this expression as:

(cos(θ) + i sin(θ))n = cos(nθ) + i sin(nθ)

This is what helps us derive trigonometric identities. For example, let n = 2. Then we have:

(cos(θ) + i sin(θ))2 = cos2(θ)− sin2(θ) + 2i cos(θ) sin(θ)

We know that this is just cos(2θ) + i sin(2θ). So by matching the real and imaginary parts. We
have that:

cos(2θ) = cos2(θ)− sin2(θ)

sin(2θ) = 2 cos(θ) sin(θ)

Similarly, we can do this for n = 3. From the first part, we have:

(cos(θ) + i sin(θ))3 = cos(θ)3 + 3i sin(θ) cos2(θ)− 3 cos(θ) sin2(θ)− i sin3(θ)

Dividing the expression into its real and imaginary parts we have:

cos(3θ) + i sin(3θ) = [cos3(θ)− 3 cos(θ) sin2(θ)] + i[3 sin(θ) cos2(θ)− sin3(θ)]

= [cos3(θ)− 3 cos(θ)(1− cos2(θ))] + i[3 sin(θ)(1− sin2(θ))− sin3(θ)]

= [4 cos3(θ)− 3 cos(θ)] + i[3 sin(θ)− 4 sin3(θ)]

So we have our identities:
cos(3θ) = 4 cos3(θ)− 3 cos(θ)

sin(3θ) = 3 sin(θ)− 4 sin3(θ)

In this fashion, we can obtain trigonometric identities for any cos(nθ) and sin(nθ).

4 Fourier Series
We conclude with a section on Fourier Series. The idea behind Fourier series is to map any periodic
function in terms of sine and cosine. A reason for why we may want to do this lies in differential
equations and the fact that sine and cosine are nice functions when working and solving differential
equations. An interesting side note and explanation of what Fourier series represent lies in the
fact that any time-dependent closed path can be emulated by infinitely many circles of different
frequencies. The radii of those circles form a Fourier series.

That said, we can try to generate the form of a Fourier series for a periodic function. For the
sake of simplicity, let us start with a periodic function with period of 2π. Then our function can
be written as follows:

f(t) = a0 +

∞∑
n=1

an cos(nt) +

∞∑
n=1

bn sin(nt)

With some start constant term a0 and weighted terms an for functions of cosine of period 2π
and every smaller half of that period (i.e. π, π2 , ...) and weighted terms bn for functions of sine of
equivalent periods. With this, we can try to make to make it complex with the use of the complex
exponential function. Start by noting that,

cos(t) =
eit + e−it

2
and sin(t) =

eit − e−it

2i

So our function in the Fourier form can be written as:

f(t) = a0 +

∞∑
n=1

an(
eit + e−it

2
) +

∞∑
n=1

bn(
eit − e−it

2i
)

Rearranging, we have that:

f(t) = a0 +

∞∑
n=1

an − ibn
2

eint +

∞∑
n=1

an + ibn
2

e−int
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We can simplify and say that:

f(t) =

∞∑
n=1

cne
int

where cn = a0 when n = 0, cn = an−ibn
2 when n = 1, 2, 3, ..., and cn = an+ibn

2 when n =
−1,−2,−3, ... Now the question remains- what are an, bn, and cn. We know that cn can be found
from an and bn so let us start by determining those. Remember the original form:

f(t) = a0 +

∞∑
n=1

an cos(nt) +

∞∑
n=1

bn sin(nt)

We can notice that we can determine the value of an or bn where n is not 0 by multiplying the
Fourier series’ equation by the function for which the an or bn is the weight and then taking the
integral of both sides from −π to π. In this way, all terms on the right side of the equation will go
to zero with the integral except for the term an cos(nt) cos(nt) or bn sin(nt) sin(nt) whose integral
in being taken will go to anπ or bnπ respectively. Therefore we are left with:∫ π

−π
f(t) cos(nt) dt = anπ or

∫ π

−π
f(t) sin(nt) dt = bnπ

Solving for an and bn we have:

an =
1

π

∫ π

−π
f(t) cos(nt) dt and bn =

1

π

∫ π

−π
f(t) sin(nt) dt

For a0, we can just take the integral of both sides of the equations, leaving that:∫ π

−π
f(t) dt =

∫ π

−π
a0 dt

and rearranging that,

a0 =
1

2π

∫ π

−π
f(t) dt

We can now return back to evaluate cn. For n > 0, we have:

cn =
an − ibn

2
=

1

2π

∫ π

−π
[cos(nt)− i sin(nt)]f(t) dt = 1

2π

∫ π

−π
e−intf(t) dt

If we let n < 0, we have that:

c−n =
a−n + ib−n

2
=

1

2π

∫ π

−π
[cos(nt)− i sin(nt)]f(t) dt = 1

2π

∫ π

−π
e−intf(t) dt

Finally, we have that when n = 0:

c0 =
1

2π

∫ π

−π
f(t) dt =

1

2π

∫ π

−π
e−i∗0∗tf(t) dt =

1

2π

∫ π

−π
e−intf(t) dt

Therefore, for all c, we have that:

cn =
1

2π

∫ π

−π
e−intf(t) dt

for our Fourier series

f(t) =

∞∑
n=1

cne
int

The last thing we want to do is to extend this to functions of all periods and not just those of
period 2π. We can easily note that if the function has period L, that we have that

cn =
1

L

∫ L/2

−L/2
e−int

2π
L f(t) dt
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in the general Fourier series

f(t) =

∞∑
n=1

cne
−int 2πL

We now have the ability to write all periodic functions in terms of the complex exponential function
which is often easier to integrate than sine and cosine and will allow for easier solving for the
constants of the Fourier series. In addition, with the single form for cn, it is easier to work with
complex Fourier Series then the previous form. As a result, Fourier Series provide yet another
helpful application of the complex exponential function.
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