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1. Introduction

Eulerian numbers are combinatorial numbers, which were first introduced by Leonard Eu-
ler in his book Institutiones calculi differentialis [Eul]. Euler’s original definition of Eulerian
numbers is given in section 3. A modern reference for Eulerian numbers is Peterson’s book
Eulerian numbers [Pet]. We highly recommend the reader to read Peterson’s book if the
reader develops an interest in Eulerian numbers.

2. Eulerian Numbers

Definition 2.1 (Symmetric Group). Given a natural number n, the symmetric group Sn, is
the set of all permutations of {1, 2, 3, . . . , n}(i.e bijections, σ : {1, 2, 3, . . . , n} → {1, 2, 3, . . . , n}).

To avoid clutter it is useful to write a permutation in the so called one line notation, that
is σ = σ(1)σ(2) . . . σ(n). So an example of an element in S3 is σ = 213, i.e. the permutation
that maps 1 → 2, 2 → 1 and 3 → 3.

Definition 2.2 (Descents). Given a permutation, σ ∈ Sn an index i is said to be a descent ,
if σ(i) > σ(i+ 1).

Remark 2.3. A function from
⋃

Sn to N is called a permutation statistic, the function map-
ping a permutation to the number of descents it has is an example of a permutation statistic.

We are now ready to define Eulerian numbers.

Definition 2.4. An Eulerian number ,
〈
n
k

〉
, is the number of permutations, σ ∈ Sn such that

the number of descents σ has is equal to k.

Example. Let us compute the Eulerian number:〈
3

1

〉
The permutations in S3 are:

123, 132, 213, 231, 312, 321

Of these the ones with 1 descent are:

132, 213, 231, 312

Therefore
〈
3
1

〉
= 4.

The following is the table of the first few Eulerian numbers:
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2 〈
n
k

〉
values for n ≤ 10

n\k 0 1 2 3 4 5 6 7 8 9
0 1
1 1
2 1 1
3 1 4 1
4 1 11 11 1
5 1 26 66 26 1
6 1 57 302 302 57 1
7 1 120 1191 2416 1191 120 1
8 1 247 4293 15619 15619 4293 247 1
9 1 502 14608 88234 156190 88234 14608 502 1
10 1 1013 47840 455192 1310354 1310354 455192 47840 1013 1

Theorem 2.5. The rows of the table are palindromic.

Proof. Given a permutation in Sn, n > 0, with k descents we can get a one to one corre-
spondence with a permutation in Sn with n− 1− k descents by reversing the permutation,
this implies that

〈
n
k

〉
=

〈
n

n−k−1

〉
for n > 0, and therefore the rows of the permutation are

palindromic. ■

Theorem 2.6. The nth row of the table adds to n!, in other words
∑n

k=0

〈
n
k

〉
= n!.

Proof. The sum of all numbers in the nth row is equal to the total number of permutations
in Sn, since this number is n!, we get the desired equality. ■

One has the following reccurance-relation for the Eulerian numbers:

Theorem 2.7. For any n > 0 and all k,
〈
n
k

〉
= (n− k)

〈
n−1
k−1

〉
+ (k + 1)

〈
n−1
k

〉
.

Proof. Given a permutation in Sn with k descents, we can delete the number n from the one
line notation to obtain a permutation in Sn−1 with k or k−1 descents. Given a permutation
in Sn−1 with k descents we can add n in k + 1 positions to maintain k descents. Given a
permutation in Sn−1 with k − 1 descents we can add n to n− k positions to get k descents.
Adding these two values we get the desired result. ■

The recurrence relation gives us the following illuminating “weighted” pascal-like triangle
for the Eulerian numbers:

1

1 1

1 4 1

1 11 11 1

1 1

1 2 2 1

1 3 2 2 3 1
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One of the most interesting identities related to the Eulerian numbers is known asWorpitzky’s
identity , which we state below:

Theorem 2.8 (Worpitzky’s identity).

(k + 1)n =
n−1∑
i=0

〈
n

i

〉(
k + n− i

n

)
Proof. We shall give a bijective proof of the identity. Define a barred permutation to be
a permutation in Sn with k inserted bars, with the restriction that at least one bar must
be inserted between a descent. Let B(n, k) denote the number of barred permutations
in Sn with k bars. For example B(3, 2) = Card({||123, |3|12, 3|2|1, ...}). We can count
B(n, k) in two different ways, we can obtain a barred permutation of n with k bars from
a normal permutation with i descents by placing a bar between each descent and then
placing k − i bars, the total number of ways to do this is

〈
n
i

〉(
n+k−i

n

)
therefore we have

B(n, k) =
∑n−1

i=0

〈
n
i

〉(
k+n−i

n

)
, but we can count B(n, k) in a different way, since the numbers

between any two bars are increasing we have that B(n, k) = (k+1)n, equating the two values
we got, we get the desired equality. ■

We can apply Worpitzky’s identity repeatedly to get the following:〈
n

0

〉
= 1〈

n

1

〉
= 2n − (n+ 1)〈

n

2

〉
= 3n − 2n(n+ 1) +

(
n+ 1

n− 1

)
Continuing in this manner we get the following alternating sum formula:

Theorem 2.9 (Alternating sum formula). For any n ≥ 1 and all k,
〈
n
k

〉
=

∑k
i=0(−1)i(k +

1− i)n
(
n+1
i

)
3. Eulerian Polynomials

(Note: We shall completely disregard convergence issues in this section.)

Remark 3.1. Historically it were the Eulerian polynomials that gave rise to the Eulerian
numbers.

Notice that
∞∑
k=0

kxk =
x · 1

(1− x)2

Differentiating both sides we get:
∞∑
k=0

k2xk =
x(1 + 1x)

(1− x)3

Continuing this process of differentiating we get:
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∞∑
k=0

k3xk =
x(1 + 4x+ 1x2)

(1− x)4

∞∑
k=0

k4xk =
x(1 + 11x+ 11x2 + 1x3)

(1− x)5

As one can see the Eulerian numbers have emerged in the coefficients of the polynomials.

Definition 3.2. An Eulerian Polynomial is a polynomial, An(x) =
∑n−1

k=0

〈
n
k

〉
xk. For conve-

nience we define A0(x) = 1(unfortunately this conflicts with the usual empty sum conven-
tion).

Using induction and the recurrence for the Eulerian numbers, we get the following recur-
rence for the Eulerian polynomials:

Theorem 3.3.
An+1(x) = (1 + nx)An(x) + x(1− x)A′

n(x)

Induction and the recurrence for the Eulerian polynomials allows us to prove the curious
observation made at the beginning of the section, the identity is known as the Carlitz Identity .

Theorem 3.4 (Carlitz Identity).
∞∑
k=0

knxk =
x · An(x)

(1− x)n+1

To finish this section let us present a cool application of the Carlitz identity. Recall from
Simon’s notes [RS, Chapter 5] we have:

ζ(−k) = (−1)k
Bk+1

k + 1
and

ζa(−k) = (1− 2k+1)ζ(−k)

Where the Bk are the Bernoulli numbers and k is a non-negative integer.
We can also evaluate ζa(−k), using the Carlitz identity. Letting x = −1 in the Carlitz

identity, we get that:

ζa(−k) =
−A(−1)

2k+1

Solving for A(−1) we get that:

A(−1) = 2n+1(2n+1 − 1)
Bn+1

n+ 1

In other words we have:
n∑

m=0

(−1)m
〈
n

m

〉
= (2n+1 − 1)

Bn+1

n+ 1

The boxed identity gives us a cool relation between the Eulerian numbers and the Bernoulli
numbers.
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4. Generating function for the Eulerian polynomials

Let us give the definition of an exponential generating function:

Definition 4.1. Given a sequence, an, the exponential generating function for the sequence
an is the series f(t) =

∑∞
n=0 an

tn

n!
.

Consider the exponential generating function for the sequence of Eulerian polynomials,
A(x, t) =

∑∞
n=0An(x)

tn

n!
, then we have that by plugging in for An(x) using the Carlitz

identity we have that A(x, t) = x−1
x−et(x−1) .
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