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1. Abstract

This paper aims to examine Euler’s techniques in solving quartic Diophantine equations
and their lasting impact on mathematics.

2. Introduction

Diophantine equations are polynomial functions in two or more variables that are solved
only for integer solutions. Such equations with integer solutions, which are mostly positive,
are more sought after in many practical fields. This makes the process of deriving the solution
much more crucial to various applications.

But the problem with the fourth-degree Diophantine equation was the complex interactions
between the different variables, considering there was no particular way to generalize such
equations to isolate variables.

Leonhard Euler, a prominent mathematician of the 18th century, made remarkable contri-
butions to various mathematical fields, including number theory and Diophantine equations.
Euler’s exploration of quartic Diophantine equations, characterized by fourth-degree poly-
nomials, exemplified his ingenuity.

Despite these challenges, Euler made significant contributions to the field of Diophantine
equations. He developed innovative methods and solved numerous individual equations, but
his work was mostly case-specific rather than providing a general theory.

Euler’s efforts in solving these equations provided insights into integer solutions and in-
fluenced subsequent research.

3. Background and Historical Context

3.1. Development of Quartic Diophantine Equations Through History. Euler’s con-
tributions built upon earlier work, extending methods for solving lower-degree equations. Eu-
ler made significant contributions to solving Diophantine equations, particularly by building
upon the work of Pierre de Fermat. He used a combination of modular arithmetic and in-
finite descent and introduced the Totient function and generalized Fermat’s Little theorem
to tackle lower-degree Diophantine equations.

Quartic Diophantine equations presented challenges due to variable interplay and the lack
of a general solution approach.

Euler’s interest in Diophantine equations stemmed from his broader number theory pur-
suits. His innovative strategies left a lasting impact on Diophantine equation research.
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4. Statement of the Problem

4.1. Introduction to Euler’s Quartic Diophantine Equation: x4 + y4 = z4. Euler
explored the equation a2x4 + 2abx3y + cx2y2 + 2bdxy3 + d2y4, seeking integer solutions.

4.2. Significance of the Quartic Diophantine Equation in Number Theory. The
quartic Diophantine equation contributes to understanding fourth powers and integer rela-
tionships.

5. Euler’s Contributions

Euler applied modular arithmetic, infinite descent, and Euler’s totient function.
Euler made significant contributions to solving Diophantine equations. Notably for lower

degree equations:

5.1. Euler’s Totient Function. The Euler’s totient function, denoted as ϕ(n), counts
positive integers less than n coprime to n:

ϕ(n) =
∣∣{m ∈ Z+ : 1 ≤ m < n, gcd(m,n) = 1}

∣∣
For example, ϕ(8) = 4, as there are four such integers for 8.

5.2. Fermat’s Little Theorem and Euler’s Generalization. Fermat’s Little Theorem:
If p is prime, ap−1 ≡ 1 (mod p) for a coprime to p.

Euler’s Generalization: For coprime a and n, aϕ(n) ≡ 1 (modn).
Using these, Euler solved various lower-degree Diophantine equations. E.g., finding re-

mainder of 521 divided by 11:

521 = (510)2 × 5 ≡ 12 × 5 ≡ 5 (mod 11).

5.3. Fermat’s Method of Infinite Descent. Infinite descent is a technique to prove the
absence of integer solutions by contradiction. This method relies on the intuition that a
series cannot be infinite if it is of only non-negative integers and is strictly decreasing.

For example, consider the equation x4 + y4 = z2 where xyz ̸= 0
Here it is possible to assume that x2, y2, z are co-prime, since even if they are not, their

common factors would cancel out and they would end up as co-primes.
Furthermore, the original equation could be written as (x2)2 + (y2)2 = z2, which makes

(x2, y2, z) a Pythagorean Triplet. There exist coprime p, p of opposite parity such that

x2 = 2pq

y2 = p2 − q2

z = p2 + q2

Now, these set of equations led to another Pythagorean Triplet with y, p, q, which further
yields more similar equations with the sam restrictions,

q = 2ab

y = a2 − b2

p = a2 + b2
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And since a, b have the same restrictions as p, q

x2 = 2pq = 4ab(a2 + b2)

Now if p | a or p | b, then it cannot divide a2 + b2 since a, b are co-prime. Which makes
a2 + b2 and ab co-prime. Hence, ab and a2 + b2 are all perfect squares. Since ab is a perfect
square, and a, b are relatively prime, both a and b are perfect squares, i.e. a = A2, b = B2.
As a2 + b2 is a perfect square,

P 2 = a2 + b2 = A4 +B4

Since P 2 = a2 + b2 = p < p2 + q2 = z and P < Z, it is evident that an infinite descent has
occurred.

6. Euler’s Quartic Diophantine Equation

Euler tackled fourth-degree Diophantine equations, like A4 + B4 + C4 = D4. using the
method explained in his E772 paper mainly focused on the equation of the form

a2x4 + 2abx3y + cx2y2 + 2bdxy3 + d2y4 = □

6.1. Impact and Significance of Euler’s Contributions. Euler’s work laid the founda-
tion for higher-degree Diophantine equation research. like: Matiyasevich’s result emphasizes
limitations of algorithmic solutions, Euler’s conjecture was disproved, leading to exploration
of solutions and parametric solutions and Mathematicians like Ramanujan and Jacobi con-
tributed special solutions and identities.

7. Euler’s Approach

Quartic equations posed the difficulty of isolating variables to find integer solutions since
there isn’t much information or general formulas to derive roots of biquadratic (quartic)
problems. Euler dealt with equations of the form:

a2x4 + 2abx3y + cx2y2 + 2bdxy3 + d2y4 = □

where he lets the equation equal an unknown value.
Euler used Number theory and Algebraic Manipulation to represent such problems in

Quadratic form. Although Euler’s method was not a general formula like for quadratic
equations, the approach was applicable not only for special case scenarios but for many
Diophantine quartic problems more generally.

On observation, Euler noticed that the previous equation reduces to a second-degree ex-
pression under quantity squared.

into the form

(ax2 + bxy + dy2)2 + (c− b2 − 2ad)x2y2

Consider the equation:

a2x4 + 2abx3y + cx2y2 + 2bdxy3 + d2y4

Grouping and rewriting the original quartic equation:

((ax2)2 + 2(ax2)(bxy) + cx2y2 + 2(bxy)(dy2) + d2y4).
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With a few modifications the equation resembles the identity: (a+ b+ c)2 = a2+ b2+ c2+
2ab+ 2bc+ 2ac

Thus the equation can be written as

(ax2)2 + 2(ax2)(bxy) + cx2y2 + 2(bxy)(dy2) + (dy2)2 + 2(ax2)(dy2)− 2adx2y2 − b2x2y2

Which simplifies to

(ax2 + bxy + dy2)2 + (c− b2 − 2ad)x2y2

Now, for the ease of working with simpler terms, Euler substituted the expressions within
the brackets with more manageable variables i.e.

letting (c− 2ad− b2) = mn
consequently, the other expression (ax2+bxy+dy2)2 equates to λ(mp2−nq2), for xy = 2λpq

and on comparing the new equation with the original:

(ax2)2+2(ax2)(bxy)+2(bxy)(dy2)+(dy2)2+2(ax2)(dy2)+mnx2y2 = a2x4+2abx3y+cx2y2+2bdxy3+d2y4

.
Here m,n, p and q are considered integers, but if these variables take the value of a fraction

or rational number, then y is considered one since the solution could only be an integer, which
makes it binding for the denominator to equal one.

Now, the new value of x becomes 2λpq
substituting this value into the previous equation of

(ax2 + bxy + dy2)2 = λ(mp2 − nq2)

yields

4aλ2p2q2 + 2λbpq + d− λmp2 − λnq2 = 0

Since it is a quadratic equation in two variables, p and q, the quadratic formula is used
twice to represent both variables in terms of another

4aλ2p2q2 + 2λbpq + d− λmp2 − λnq2 = 0

(4aλ2q2 − λm)p2 + 2λbpq + d− λnq2 = 0

By using the Quadratic formula:

−b±
√
b2 − 4ac

2a

p =
−2λbq ±

√
4λ2b2q2 − 16aλ2q2d+ 4aλ3mq2 − 4λ2mnq4

8aλ2q2 − 2λm

p =
−λbq ±

√
λmd+ λ2q2(b2 − 4ad+mn)− 4λ3naq4

4λ2aq2 − λm

Similarly, using the same steps for the variable q yields,
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q =
−2λbp±

√
4λ2b2p2 − 16aλ2p2d+ 4aλ3np2 − 4λ2mnp4

8aλ2p2 − 2λn

q =
−λbp±

√
λnd+ λ2p2(b2 − 4ad+mn)− 4λ3map4

4λ2ap2 − λn

[Note: λ is mostly neglected from restrictions since it is simply an added variable that is
left to our choice]

Due to the radical operation, the expression would produce two different values for p,
which Euler referred to as p′.

q + q′ = − 2bp

4λapp+ n
And since q is interdependent on p and vice versa, this process will yield a series of results

for the values of p and q which are named as p′, q′, p′′, q′′ and so on, which follow the pattern;

p′ =

(
− 2bq

4λaq2 −m

)
− p; q′ =

(
− 2bp′

4λap′2 + n

)
− q

p′′ =

(
− 2bq′

4λaq′2 −m

)
− p′′; q′′ =

(
− 2bp′′

4λap′′2 + n

)
− q′

p′′′ =

(
− 2bq′′

4λaq′′2 −m

)
− p′′′; q′′′ =

(
− 2bp′′′

4λap′′′2 + n

)
− q′′

And so on.
By rearranging the letters p and q:
We start with the original equations:

p′ =

(
− 2bq

4λaq2 −m

)
− p; q′ =

(
− 2bp′

4λap′2 + n

)
− q

.
On rearranging the first equation, which involves replacing the terms involving variables

p and q with terms involving p′ and q′. We’ll use the original equation for q′ to substitute
for q. Starting with the original equation for p′:

p′ =

(
− 2bq

4λaq2 −m

)
− p

.
Now, on substituting the original equation for q′ into this equation:

p′ =

−
2b

(
− 2bp′

4λap′2+n

)
4λa

(
− 2bp′

4λap′2+n

)2

−m

− p

p′ =

(
4b2bp′

(4λa)2p′2 −m(4λap′2 + n)

)
− p

p′ =

(
4b2bp′

16λ2a2p′2 − 4λamp′2 −mn

)
− p
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p′ =

(
4b2bp′

p′2(16λ2a2 − 4λam)−mn

)
− p

p′ =

(
4b2bp′

p′2(4λa(4λa−m))−mn

)
− p

Finally, rearrange the terms yields:

p′ =

(
− 2bq′

4λaq′2 −m

)
− p

.
Due to this rearrangement for both formulas of p and q series of equations for q, p, q′, p′,

q′′, p′′ is obtained and defined as follows:

p′ =

(
− 2bq′

4λaq′2 −m

)
− p; q′ =

(
− 2bp

4λap2 + n

)
− q

p′′ =

(
− 2bq′′

4λaq′′2 −m

)
− p′; q′′ =

(
− 2bp′

4λap′2 + n

)
− q′

.
This modification to the formula for the values of p and q is important because it allows

us to cut down on all the sets in between since just knowing the initial values of p and q
creates a domino effect, producing the values of p′, q′, p′′, q′′ and so on.

This series allows us to generate multiple values for p and q without further substitution,
leading to a progression that is more efficient than the usual method.

Furthermore, using the permuted formula, many more values of p and q are derived, and
Euler noticed a law of progression that began to form.

Now with the infinite values of p and q, they can be combined in infinite different ways to
get the value of x by using

(
N
2

)
, where N is the total number of values of p and q.

2λpq, 2λqp′, 2λp′q′, 2λq′p′′, etc.

But, while the initial formula series produced another set of values for x, i.e.

2λpq, 2λq′p, 2λp′q′, 2λq′′p′, etc.

These two sequences are just two possibilities of values for x. They are arranged in such
a way that they follow a law of progression.

This was the general method that Euler used to obtain the values of x and y, the variables
of the solution. And since initially xy was made equal to 2λpq, no matter what type of
number 2λpq ends up being, the values of x and y are manipulated in such a way that they
always remain integers; Euler considered y = 1 if the value of 2λpq turned out to be an
integer, and in the other scenario where 2λpq has a fractional value, then Euler allowed
the value y to equal the denominator while x would take the value of the numerator. This
would always work since recall that initially, xy = 2λpq; thus, the fractional value of x would
actually be 2λpq

y
.
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7.1. Solving for p and q. The initial values for p and q are the only values that need to be
derived to solve for x and y. Euler names a common method to derive these initial values
from the original fourth power equation.

He considers the scenario where y = 1, which makes the original equation a quartic
expression in variable x

a2x4 + 2abx3 + cx2 + 2bdx+ d2

Now, Euler sets the root of the original fourth power expression to several values that
resemble a variation of λ(mp2 − nq2), which would be beneficial while trying to manipulate
the formula for x to derive the value of p and q.
[Note: This was possible since Euler did not clearly define what the original fourth power

expression would be equal to and thus used this (□ ) to indicate its value. Therefore this
means that in this case, a root need not equate the expression to zero]

First, Euler sets the root to be ax2 + bx− d or c−b2

2d
x2 + bx+ d, is similar to the previous

equation but with certain rearrangements. On plugging into the original equation and solving
for x offers the formula:

x =
4bd

b2 − 2ad− c
=

−4bd

mn+ 4ad

Since, c = mn+ b2 + 2ad
Similarly setting the root to be equal to ax2− bx−d or in a different form ax2+ bx+ c−bb

2a
,

which allows x to be:

x =
b2 − 2ad− c

4ab
=

−mn− 4ad

4ab

It is important to notice that although it may seem like this is the solution for x, this is
not based on the original equation but on a modified version where a root is substituted into
the equation.

Euler describes a process of finding suitable values for variables x, p, and q based on given
equations. Let’s break it down more concisely:

Starting with y = 1 to find a value for x.

ax2 + bx+ d = λ(mpp− nqq)

where x = 2λpq when y = 1. This results in

ax2 + bx+ d

x
=

mpp− nqq

2pq

Given ax2 + bx+ d = Ax, and mpp− nqq = 2Apq, it’s deduced that

p =
A+

√
A2 +mn

m

, which can be simplified further.
By considering p = f and q = g, a fraction f/g can be formed, and a value for λ is

determined such that 2λpq = x. This leads to the formation of the mentioned series.
The method is exemplified through examples, building upon previous discussions in earlier

sections.
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8. Generalization of Euler’s Method and Example

Euler, in one of his earlier papers (E763), focused on a special case of the process followed
in his E772 paper.

Although this method is not quite general, Euler mentions a few examples in his paper
which allow the same techniques to be applied to other quartic Diophantine equations by
transforming them through algebraic manipulation to resemble the original equation used in
his E772 paper.

One of the examples that follow this mentioned in his paper is based on a more general
equation,

αA4 ± βB4 = □

The formula involves variables α, β, A, B. It introduces a simpler version when A/B = C,
and when specific conditions are met, the formula simplifies further. This is related to the
substitution C = 1+x

1−x
and its application.

The formula αA4 ± βB4 = □ is presented, where α and β are coefficients, and A and B
are variables raised to the fourth power.

When A/B = C, the formula simplifies to αC4 ± β = □. This version is easier to get the
expression to resemble the initial equation.

In cases where C = 1 or A = B, the formula becomes α ± β = □, resulting in a perfect
square.

All formulas of this type can be transformed into a common form using the substitution
C = 1+x

1−x
. By setting α + β = a2, the formula adopts the following structure:

a2 + 4(α− β)x+ 6a2x2 + 4(α− β)x3 + a2x4 = □

It is clear that in this equation, a = d, which would now look more like the original
formula:

(a+ 2(α− β)x+ ax2)2 + 16αβx2

This process illustrates how these formulas can be connected and reduced using a specific
substitution so that the same process can be applied all over again to solve the equation.

9. Significant Other Contributions to Solving the Quartic Diophantine
Equations

Euler focused on quartic equations that were equal to an undefined value. Following the
work of this work of Euler’s other mathematicians worked on Quartic Diophantine equations
mainly of the form, x4 + y4 = z4

9.1. Joseph-Louis Lagrange. Lagrange’s work involved utilizing elliptic curves to solve
quartic diophantine equations. He approached equations like x4 + y4 = z4 using methods
involving rational points on elliptic curves. He parameterized such equations using the well-
known elliptic curve equation in Weierstrass form:

E : y2 = x3 − ax− b.

Lagrange’s approach aimed to find points (x, y) on such elliptic curves that satisfied the
quartic diophantine equations, effectively finding rational solutions to those equations.

Elliptic curve methods can provide parametric solutions and rational points on curves,
which is valuable for generating solutions to quartic diophantine equations. They also offer
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a systematic framework for studying the equation’s properties, but at the same time, they
may become complex for certain types of quartic equations. They are only efficient when
dealing with equations that can be represented in elliptic curve form.

9.2. Gabriel Lamé. Lamé’s work extended the theory of elliptic functions to quartic dio-
phantine equations. For instance, consider the equation x4+y4 = z4. Lamé’s parametrization
technique involved expressing x, y, and z in terms of Jacobi elliptic functions. These func-
tions are solutions to the elliptic differential equation and have useful properties for studying
diophantine equations.

Lamé’s parametrization might look something like this:

x = sn(u), y = cn(u), z = dn(u),

where sn(u), cn(u), and dn(u) are Jacobi elliptic functions with appropriate constants.
Substituting these expressions into the quartic equation generates a parametric solution in
terms of elliptic functions.

9.3. Ernst Eduard Kummer. Kummer’s work with ideal numbers and regular primes laid
the groundwork for understanding the solvability of quartic diophantine equations. Consider
the equation x4+ y4 = z2. Kummer showed that this equation has no nontrivial solutions in
integers Kummer showed that this equation has no nontrivial solutions in integers x, y and
z, when p is an odd prime and p ≡ 1 (mod 16). This result showcases his approach to using
higher algebraic techniques, including ideal numbers, to study diophantine equations.

For example, when we consider p = 17, then using this method we would consider (x4+y4 =
z2) modulo 17, i.e. evaluating the fourth powers modulo 17:

04 ≡ 0 (mod 17)

14 ≡ 1 (mod 17)

24 ≡ 16 (mod 17)

34 ≡ 13 (mod 17)

44 ≡ 1 (mod 17)

54 ≡ 16 (mod 17)

64 ≡ 1 (mod 17)

74 ≡ 16 (mod 17)

84 ≡ 1 (mod 17)

94 ≡ 0 (mod 17)

and so on,
But since there are no values such that k4 ≡ 2 or k4 ≡ 3 (mod 17). Thus the equation

(x4 + y4 = z2) has no trivial solutions or p = 17. This demonstrates Kummer’s method of
determining the solvability of a diophantine equation, by by analyzing the equation modulo
a regular prime.

Kummer’s method involved factoring the left-hand side of the equation modulo a regular
prime p and analyzing the powers of p that divide the factors. If certain conditions were
met, he concluded that no solutions existed.

Here as mentioned before, Euler’s Totient Function, Fermant’s Little Theorem, and Euler’s
generalization play a major role in solving quartic diophantine equations.
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9.4. Leopold Kronecker. Kronecker’s algebraic methods contributed to the study of quar-
tic diophantine equations indirectly through his emphasis on algebraic number theory. His
introduction of algebraic integers and ideals laid the foundation for modern approaches to
diophantine equations using algebraic techniques.

Kronecker’s ideas allowed mathematicians to relate the properties of algebraic number
fields to diophantine equations, including quartic ones. By considering the properties of
number fields and their extensions, mathematicians gained insights into the structure of
solutions to diophantine equations involving quartic terms.

9.5. Ferdinand von Lindemann. Lindemann’s proof of the transcendence of π relied on
the Lindemann–Weierstrass theorem, which states that if a1, . . . , an are algebraic numbers
(numbers that are solutions of polynomial equations with integer coefficients), and b1, . . . , bn
are nonzero algebraic numbers, then the number ab11 · · · abnn is transcendental.
Lindemann’s proof essentially demonstrated that if a is an algebraic nonzero number and

b is an irrational algebraic number, then ab is transcendental. This result has implications
for diophantine equations involving exponential terms, such as those present in quartic equa-
tions.

For example, Lindemann proved that ex = 3 has no algebraic solutions using transcendence
proof.

In this case,
a = e and b = ln3 where ln is the natural log. Since ln3 is irrational e is a nonzero

algebraic number (as it is the base of the natural logarithm), Lindemann’s theorem implies
that eln3 = 3 is transcendental, and therefore there are no algebraic solutions to x in ex = 3
is transcendental. Therefore, there are no algebraic solutions for x in the equation
This result demonstrates Lindemann’s approach of proving that certain equations involv-

ing algebraic and transcendental numbers have no algebraic solutions and in the process
working on quartic Diophantine equations.

10. Conclusion

Euler’s contributions were not merely definitive solutions, but guiding lights that paved
the way for subsequent generations of mathematicians. While his work may not have pro-
vided the ultimate resolution to the complexity of quartic Diophantine equations, it served
as a crucial foundation upon which future mathematicians could build more sophisticated
methods.

Euler’s ingenious techniques, marked by algebraic manipulation and creative parameter-
izations, not only deepened our understanding of the subject matter but also set the stage
for the likes of Leopold Kronecker and Joseph-Louis Lagrange to introduce more refined
strategies. Kronecker’s insights into the structure of algebraic number fields and Lagrange’s
profound investigations into number theory were, in part, inspired by Euler’s foundational
work on quartic Diophantine equations, a part of mathematics that has become so widely
used not only for other fields but also in the sciences.
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