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1. Approximating the Series Using the Leibniz Series

The topic of this paper is the series
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Where every term is the reciprocal of a prime and each term of the form 1
4n+1

has a

negative coefficient, while each term of the form 1
4n−1

has a positive coefficient. This series
converges extraordinarily slowly, summing the first 25 terms of the series is only accurate to
the tenths place. So our first goal will be to find a good approximation of the series.

Euler began by looking at the Leibniz series:
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He noticed that the denominators of this series contained every prime of the form 4n − 1
with a minus sign, and those of the form 4n + 1 with a plus sign. Therefore we can obtain
the series we want complement to one by removing each composite term from the Leibniz
series. To start, let’s isolate the terms of the Leibniz series divisible by 3;
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The above series contains the negative of every term of A divisible by 3. Adding to A, we
get
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Now we can continue this, removing every composite term until we are eventually left with
the complement to one of the series we want to evaluate.
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·

From these series, we can find that the sequence 1−A, 1−B, 1−C, 1−D, · · · will approach
the series we want to evaluate. Since we know that A = π

4
, the subsequent series can be

summed with relative ease, giving the approximate value of our series to be 0.331.
However we can get a far better approximation than this. Let’s start by again removing

every composite term from the Leibniz series, however this time we will remove the prime
terms as well. This gives:

A(1 + 1
3
) = 1 + 1
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Multiplying both sides by the product of all primes, we get:

A(3 + 1)(5− 1)(7 + 1)(11 + 1) · · · = 3 ∗ 5 ∗ 7 ∗ 11 ∗ · · ·
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Or A2 = π2
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With every prime number besides 2 in the numerator, and each multiple of 4 in the de-
nominator such that each denominator is one more or less than the numerator. By again
removing every term besides one from the series π2

8
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10∗12 · · · . Than dividing by A2, we find that 2 = 3+1
3−1

5−1
5+1

7+1
7−1

11+1
11−1

· · · . Next,
let’s take the natural logarithm of both sides, giving:
ln(2) = ln(3+1

3−1
) + ln(5−1
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) + ln(11+1
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) + · · ·

Which using the Taylor expansion of ln(1 - x), is equivalent to
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So now are goal will be to evaluate these series. To start, let’s define these series:
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·
·
In general,

B(s) = 1− 1

3s
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5s
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7s
+ · · · =

∞∑
n=0

(−1)n
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This is the Dirichlet B function. It is known that B(3) = 1
2!
∗ π3

24
, B(5) = 5

4!
∗ π5

26
, B(7) = 61

6!
∗ π7

28
,

B(9) = 1385
8!

∗ π9

210
, Etc. In his original paper, Euler did not give a proof for these values,

however I believe it would be beneficial to provide one here. To start, let’s look at an infinite
series expression for cotangent, namely:

1.0.1.

πcot(πx) =
1
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Proof.

g(x) =
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∞∑
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(
1
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)

gN(x) =
1

x
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)
=

N∑
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1
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Let’s prove that g(x) and πcot(πx) share many properties. firstly, that both are defined
for only real non-integer values of x. We can show that πcot(πx) is only undefined on the
integers through simple algebra, the tricky part is to show this is true for g(x). First, if x
is an integer in 1

x
+

∑∞
n=1

1
x+n

+ 1
x−n

, than n must take on either x or minus x as n cycles
from 1 to ∞. So their must be some value in the sum which is undefined, making the entire
sum undefined. To show that g(x) converges for non integer values of x, we can compare
g(x) = 1

x
+
∑∞

n=1
2x

x2−n2 to the series
∑∞

n=1
1
n2 , which converges. Thus, g(x) is defined if and

only if x /∈ Z and x ∈ R

Next, let’s show that both functions are periodic with period one. This is true for πcot(πx)
since both πcos(πx) and sin(πx) have period one. For g(x), we have g(x)− limN→∞ gN(x),
and

gN(x+ 1) =
N∑

n=−N

1

x+ 1 + n
=

N+1∑
n=−N+1

1

x+ n
= gN(x) +

1

x+N + 1
− 1

x−N + 1

So we can split up the limit limN→∞ gN(x+1) into limN→∞ gN(x)+ limN→∞
1

x+N+1
− 1

x−N+1
,

given both limits exist. Since the ladder limit goes to zero for large N, we get limN→∞ gN(x+
1) = limN→∞ gN(x). or g(x) = g(x+ 1), thereby showing that g(x) has period 1.

Next, we aim to prove that both g(x) and πcot(πx) are odd functions. For πcot(πx), since
πcos(πx) is even, and sin(πx) is odd, then πcot(πx) is odd. For g(x), we can simply compute
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g(−x), giving:

g(−x) = limN→∞ gN(−x) = limN→∞
∑N

n=−N
1

−x+n
= limN→∞

∑−N
n=N

1
−x−n

= −g(x) .

Next, let’s show that both g(x) and cos(x) share the same functional equation, namely;

f( 1
x
) + f(x+1

2
) = 2f(x)

For cotangent, this can be easily verified to become the sine and cosine addition laws, so
we will only show that g(x) satisfies the equation.

gN(
x

2
) + gN(

x+ 1

2
) =

N∑
n=−N

1

x/2 + 1 + n
+

N∑
n=−N

1

(x+ 1)/2 + 1 + n

= 2
∑N

n=−N
1

x+1+n
+ 2

∑N
n=−N

1
x+1+n

= 2
∑2N+1

n=−2N
1

x+1+n
= 2g2N(x) +

2
x+2N+1

g(x
2
) + g(x+1

2
) = limN→∞ 2g2N(x) +

2
x+2N+1

= limN→∞ 2g2N(x) = 2g(x)
Which proves the functional equation for g(X).

To show that g(x) = πcot(πx), let’s show that the function h(x) = πcot(πx) − g(x) is
identically zero. From the proven aspects of πcot(πx) and g(x), we know that h(x) is con-
tinuous on R\Z , has periodicity 1, is odd, and follows the functional equation shared by
both πcot(πx) and g(x). Let’s start with

limx→0 h(x) = limx→0 πcot(πx)− 1
x
−
∑N

n=1
1

x+n
+ 1

x−n
= limx→0 πcot(πx)− 1

x
= limx→0

xπcos(πx)−sin(πx)
xsin(πx)

We can evaluate this by L’Hôpital’s rule, which gives the limit to converge to 0. By the pe-
riodicity of h(x), this tell us that that h(x) = 0 for all x ∈ Z.So know, to show that h(x)
is identically zero, it suffices to show that h(x) = 0 for all x ∈ (0, 1). Let’s define a point
of h(x), (x0,M) to be the point at which h(x) achieves it’s maximum value on [0, 1]. From
the functional equation of h(x), we know that h(x0

2
) + h(x0+1

2
) = 2h(x0) = 2M , however

because h(x0

2
) ≤ M and h(x0+1

2
) ≤ M , they must both equal M . A similar argument can be

used to show that x0

2k
= M for all k. however since limx→0

x0

2k
= 0, this tells us that M = 0,

so h(x) ≤ 0 for all x. If we multiply both sides of the inequality by negative one, we get
−h(x) ≥ 0, and since h(x) is odd, this is equivalent to h(−x) ≥ 0 for all x. This tells us that
0 ≤ h(x) ≤ 0, or h(x) is identically zero. This thereby shows that πcot(πx) = 1

x
+
∑∞

n=1
2x

x2−n2 .
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From the summation form of πcot(πx), we can find the identity πcsc(πx) =
∑∞

n=−∞
(−1)n

n+x
.

1.1. Proof.

∞∑
n=−∞

(−1)n

n+ x
=

1

x
+

∞∑
n=1

(
(−1)n

x+ n
+

(−1)n

x− n
)

=
2

x
+

∞∑
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(
2

x+ 2n
+

2

x− 2n
)− 1

x
+

∞∑
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(
1

x+ n
− 1

x− n
)

= πcot(
x

2
π)− πcot(πx) = πcsc(πx)

The second step can be justified by seeing that the first sum is equivalent to double the
original sum at even integers, and by subtracting the second sum we get a sum which is
positive at even integers, and negative at odd ones. This sum is equivalent to our original
sum.

Now were finally ready to evaluate the Dirichlet Beta function. Let’s start with:

f(x) =
∑∞

k=0 B(2k + 1)x2k+1 =
∑∞

k=0

∑∞
n=0

(−1)n

(2n+1)2k+1x
2k+1 =

∑∞
n=0(−1)n

∑∞
k=0(

x
(2n+1)

)2k+1

Now by summation of geometric series, we get
∑∞

n=0

x
2k+1

1−( x
2k+1

)2
=

∑∞
n=0

x(2k+1)
(2k+1)2−x2 . Now we

can use partial fraction decomposition to get

x

2

∞∑
n=0

(−1)n(
1

2k + 1 + x
+

1

2k + 1− x
) =

x

4

∞∑
n=−∞

(−1)n

n+ 1+x
n

=
x

4
πcsc(

π

2
+

πx

2
) =

πx

4
sec(

πx

2
)

Now that we have shown that πx
4
sec(πx

2
) =

∑∞
k=0B(2k+1)x2k+1, let’s use the Taylor expan-

sion for cos(x) to get

∞∑
k=0

B(2k + 1)x2k+1 =
πx
4∑∞

n=0(−1)n x2n

(2n)!

∞∑
k=0

B(2k + 1)x2k

∞∑
n=0

(−1)n
x2n

(2n)!
=

π

4

To solve for B(2k+1), let’s compare coefficients. The only term that is nonzero will be the
x0 term, which is B(1), so we get that B(0) = π

4
. We can also find that the coefficient of the

x2m term is
∑m

k=0B(2k + 1)(π
2
)2m−2k (−1)m−k

(2m−2k)!
= 0. Or in other words, B(2m+ 1) follows the

aforementioned recurrence relation with B(1) = π
4
. From this equation, we can derive the

values of B(2m+ 1) needed for the rest of this discussion.
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Now it’s time to get back to our original problem. We want to find the values of P,Q,R, · · ·
from B(s).To do so, let’s again use the technique of removing each composite term from B(s).
To start, let A = B(s), and
B = A+ 1

3s
(A− a) and a = 1

C = B + 1
5s
(B − b) b = 1− 1

32
D = C + 1

7s
(C − c) c = 1− 1

32
+ 1

5s
·

·
·
These values complement to one will approach the value we want, Z = 1

3s
− 1

5s
+ 1

7s
+ 1

11s
−

1
13s

− 1
17s

+ · · · . From now on, we will be using decimal representations to seven digits instead
of symbolic. Let’s start by finding P , so set s = 3, giving A = B(3) ≈ 0.9689462, a = 1, b
= 0.9629630, c = 0.9709630, d = 0.96804761 . These values will give us an accurate-enough
approximation. So let’s continue, with

B ≈ A− 1
33

∗ 0.0310538 ≈ 0.9677961

C ≈ B − 1
53

∗ 0.0048331 ≈ 0.9677574

D ≈ C − 1
73

∗ 0.0032056 ≈ 0.9677481

D ≈ C − 1
73

∗ 0.0032056 ≈ 0.9677481

E ≈ D − 1
113

∗ 0, 0.0002995 ≈ 0.9677479

With this many values, we get P ≈ (1 − E) ≈ 0.0322521. Giving O ≈ 1
2
ln(2) − 1

3
P =

0.3358229.

Let’s repeat this process with s = 5, which gives A = B(5) ≈ 0.9961578, with a = 1, b
= 0.9958847, c = 0.9962048. Applying the formulas for B and C, we get

B ≈ A− 1
35

∗ 0.0038422 ≈ 0.9961420

C ≈ B − 1
55

∗ 0.0002573 ≈ 0.9961419

Thus Q ≈ 1 − C ≈ 0.0038581, and O ≈ 1
2
ln(2) − 1

3
P − 1

5
Q ≈ 0.3350513. Continuing

these approximations gives:

1
7
R ≈ 0.0000636

1
9
S ≈ 0.0000056
1
11
T ≈ 0.0000005 1

13
U ≈ 0.0000000

And thus, O ≈ 1
2
ln(2)− 1

3
P − 1

5
Q− 1

7
R− 1

9
S − 1

11
T − 1

13
U ≈ 0.3349816

So we have discovered that the series 1
3
− 1

5
+ 1

7
+ 1

11
− 1

13
− 1

17
+ · · · converges to almost

exactly 0.3349816. Unfortunately in his original paper, Euler could not find any analytic
summation of this series.
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