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Abstract. In this paper, we review Euler’s work with Resolvents and his method of solving
polynomials using Resolvent Equations. We will show and prove how his method works for
Quartic and Cubic Equations, as well as show how his method would work for higher-degree
polynomials.

1. Introduction

Throughout history, solving higher-degree polynomial equations has posed a significant
challenge for mathematicians worldwide. The pursuit of finding a strict formula or solution
for polynomial equations with a degree higher than four has been a persistent problem known
as the “Quintic Equation Conundrum”. Euler’s Resolvent Equation method has proven to
play a crucial role in the solving of polynomial equations in general, as well as with the
solvability of Quintic Equations. Euler introduced the Resolvent Equation as a tool to
transform polynomial equations into more manageable forms, introducing his own method
for solving such transformed equations. In this paper, we demonstrate Euler’s method using
resolvents to solve cubics, quartics and higher-degree polynomials, as well as solving an
example cubic.

Definition 1.1. A polynomial is an algebraic expression of the form P (x) = anx
n +

an−1x
n−1 + · · · + a1x + a0, where an−1, · · · , a0 are real numbers.

Roots - The solutions or zeros of a function (P (x) = 0)

Definition 1.2. A depressed polynomial is an algebraic expression of the form P (x) =
anx

n + an−2x
n−2 + · · · + a1x + a0, where an, · · · , a0 are real numbers and an−1 = 0.

Definition 1.3. Roots are the solutions or zeros of a function (P (x) = 0).

2. Solving Cubics

2.1. Solving the Depressed Cubic. An extremely well-known problem throughout his-
tory is that of the Depressed Cubic. Originally rumoured to have been solved in 1543, Scip-
ione del Ferro, an established Italian mathematician is credited with first finding a formula
to solve a Depressed Cubic. More about the history of the cubic can be found at [Cra12]. A
depressed cubic is a cubic of the form

x3 = ax + b

where the second-highest term x2 has a coefficient of 0. This allows Euler to manipulate
this equation, taking any root of this equation x and assuming its form as

x =
3
√
A +

3
√
B
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where A and B are two roots of some quadratic equation

z2 = αz − β .

This is the Resolvent Equation of the Cubic.

Definition 2.1. A Resolvent Equation is an equation with 1 degree less (”inferior order”
as Euler states) of another polynomial.

Based on Vieta’s Equations, we get

α = A + B, β = AB .

And after squaring the first equation x = 3
√
A + 3

√
B to get

x3 = A + B + 3
3
√
AB

(
3
√
A +

3
√
B
)

and substituting x = 3
√
A + 3

√
B, we end up with the cubic equation

x3 = A + B + 3x
3
√
AB .

Comparing this equation with the original depressed cubic equation x3 = ax + b, it is
shown that

a = 3
3
√
AB = 3 3

√
β, b = A + B = α .

And by reversing these equations

α = b, β = a3/27 .

Finally, after substituting this into the equation z2 = αz − β, we have the modified
resolvent equation

z2 = bz − a3/27 .

Reverting back to the original equation x = 3
√
A + 3

√
B and using the fact that any cube

root of a quantity has a triple value, Euler expressed the other 2 roots in the following form

x = µ
3
√
A + σ

3
√
B

where µσ = 1. The reason we are doing this is that the cube roots of A and B respectively
can have 9 possible combinations, thus in order to find the 2 definitive other roots, we take
µ and σ as 2 roots of unity to find the other 2 roots.

Definition 2.2. A root of unity is a complex number, which when raised to the power of
any integer n results in a value equal to 1. More about this can be read at [AKT14].

Thus µ and σ consequentially possess the following values in any order as they are the
roots of unity:

−1 +
√
−3

2
,

−1 −
√
−3

2
.

Therefore besides the root x = 3
√
A + 3

√
B, the other roots are, in no particular order

x =
−1 +

√
−3

2
3
√
A +

−1 −
√
−3

2
3
√
B

and

x =
−1 −

√
−3

2
3
√
A +

−1 +
√
−3

2
3
√
B .
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2.2. Converting a Regular Cubic to a Depressed Cubic. Taking any cubic in the form
ax3 + bx2 + cx + d = 0 and dividing by a to make the Cubic monic, we get

x3 +
b

a
x2 +

c

a
x +

d

a
= 0 .

Then substituting x = y− b
3a

into the equation (also known as the Tschirnhaus Trans-
formation), we get:(

y − b

3a

)3

+
b

a

(
y − b

3a

)2

+
c

a

(
y − b

3a

)
+

d

a
= 0

Definition 2.3. The Tschirnhaus Transformation is the substitution required to turn
a polynomial into a depressed polynomial eg. ax3 + bx2 + cx + d = 0 → py3 + qy + r = 0
where y = x− b

ka
. More can be found at [BR99].

After further simplifying (skipping a few steps) we get the Depressed Cubic Equation in
terms of y:

y3 +

(
c

a
− b2

3a2

)
y +

(
2b3

27a3
− bc

3a2
+

d

a

)
= 0

And from this equation, we can see that we have converted a regular cubic into a depressed
one while still using the original coefficients in our manipulation.

2.3. Cubics - An Example. Let us take an example to demonstrate Euler’s method; the
depressed cubic equation

x3 = 7x− 6

where there is no quadratic term and we apply Euler’s method to it. Firstly, we take any
one root x and represent it as

x =
3
√
A +

3
√
B

where A and B are two roots of some quadratic equation

z2 = αz − β

where α = b = −6 and β = a3/27 = 73/27 as we derived earlier. Thus the new formula is

z2 = −6z − 73/27

or, in another form,
z2 + 6z + 73/27 = 0

which after finding, we see the roots are

z = −3 +
10i

9

√
3 or z = −3 − 10i

9

√
3

or

z = −3 +

√
−100

27
or z = −3 −

√
−100

27
.

Taking −3+
√

−100
27

as A and −3−
√

−100
27

as B and one of the roots as x = 3
√
A+ 3

√
B = 2,

the other roots are, in no particular order

x =
−1 +

√
−3

2
3
√
A +

−1 −
√
−3

2
3
√
B



4 PRAKHAR MISHRA

or

x =
−1 −

√
−3

2
3
√
A +

−1 +
√
−3

2
3
√
B

, or:

x =
−1 +

√
−3

2

3

√
−3 +

√
−100

27
+

−1 −
√
−3

2

3

√
−3 −

√
−100

27
or

x =
−1 −

√
−3

2

3

√
−3 +

√
−100

27
+

−1 +
√
−3

2

3

√
−3 −

√
−100

27
.

After simplifying these expressions using the principal roots of the equation, we get

x = −3 or x = 1 .

Thus, we have proven that x3 = 7x− 6 has the roots x = 1, 2 or − 3 using Euler’s method
for solving polynomial equations using resolvents.

2.4. Recovering the Original Roots. Using the Tschirnhaus Transformation, we were
able to turn a regular cubic into a depressed one. This allowed us to use Euler’s method
and solve the depressed resultant cubic. In Euler’s method, we first represent one root of
the equation x3 as the addition of 2 cube roots 3

√
A and 3

√
B, where A and B were roots

of a regular quadratic. Through manipulations and substitutions of these roots and the
coefficients of the Resolvent Equation (α and β), we were able to use the triple value of the
cube root to find the other 2 roots of the depressed cubic equation. One could simply reverse
the Tschirnhaus Transformation of x = y − b

3a
by subtracting b

3a
from each of the roots of

the depressed cubic to get the roots of the regular cubic ie.

p, q, r 7→ p− b

3a
, q − b

3a
, r − b

3a
.

3. Solving Quartics

3.1. Solving the Depressed Quartic. Quartic equations have been a subject of fascina-
tion and study in mathematics for centuries. Just like the famous depressed cubic problem,
which attracted the attention of mathematicians in the past, quartic equations have their
own set of challenges and intriguing properties. The search for a general formula to solve
quartic equations has been an ongoing endeavor, with mathematicians throughout history
making significant contributions. However unlike equations to the fifth power or above, there
are several methods that can be used to solving quartics. Exploring the history and solu-
tions of quartic equations can provide valuable insights into the development of algebraic
techniques and the evolution of mathematical thinking. More about quartics can be viewed
at [Mer92].

Using a similar approach to the above, we first take the general form of a depressed quartic
equation as

x4 = ax2 + bx + c

and one of the roots as
x =

√
A +

√
B +

√
C

where A, B, and C are all roots of the Resolvent Equation

z3 = αz2 − βz + γ .
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From Vieta’s Equations, we get

α = A + B + C, β = AB + BC + AC, γ = ABC .

In an attempt to free the equation x =
√
A +

√
B +

√
C from irrationality, we square it

to get

x2 = A + B + C + 2
√
AB + 2

√
AC + 2

√
BC

and by subtracting α, we get:

x2 − α = 2
√
AB + 2

√
AC + 2

√
BC .

By squaring it again

x4 − 2αx2 + α2 = 4AB + 4AC + 4BC + 8
√
ABC

(√
A +

√
B +

√
C
)

= 4β + 8x
√
γ

and simplifying, we get

x4 = 2αx2 + 8x
√
γ + 4β − α2 .

Comparing this to x4 = ax2 + bx + c, we get

a = 2α, b = 8
√
γ, c = 4β − α2

which shows that

α =
a

2
, γ =

b2

64
, β =

c

4
+

a2

16
.

Therefore by subbing these into the cubic equation with roots A, B, C, we get

z3 =
a

2
z2 − 4c + a2

16
z +

b2

64
.

Apart from x =
√
A +

√
B +

√
C, Euler takes the 3 other solutions to be of the form

√
A−

√
B −

√
C,

√
B −

√
A−

√
C,

√
C −

√
A−

√
B .

Substituting in z =
√
t, we get(

t +
4c + a2

16

)√
t =

at

2
+

b2

64
.

And after a series of expansions and simplifying,

t3 =

(
a2

8
− c

2

)
t2 +

(
ab2

64
− c2

16
− a2c

32
− a4

256

)
t +

b3

4096
.

After this final result, it is visible that this equation has the property that its roots are the
squares of the roots (A, B and C) of the prior equation. Despite this method being tedious,
we have nevertheless obtained a cubic equation from a quartic one and found the roots alike.
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3.2. Converting a Regular Quartic to a Depressed Quartic. Taking any quartic in
the form ax4 + bx4 + cx2 + dx + e = 0 and dividing by a to make the Quartic monic, we get

x4 +
b

a
x3 +

c

a
x2 +

d

a
x +

e

a
= 0 .

Then substituting x = y − b
4a

into the equation, we get(
y − b

4a

)4

+
b

a

(
y − b

4a

)3

+
c

a

(
y − b

4a

)2

+
d

a

(
y − b

4a

)
+

e

a
= 0 .

After further simplifying (skipping a few steps) we get the Depressed Cubic Equation in
terms of y:

y4 +

(
6b

a

)
y2 +

(
b2 − 4ac

a2

)
y +

−3b3 + 4abcd− 8a2e

a3
= 0 .

From this equation, we can see that we have converted a regular quartic into a depressed
one while still using the original coefficients in our manipulation.

3.3. Recovering the Original Roots. Using the substitution of x = y− b
4a

, we were able
to turn a regular quartic into a depressed one. This allowed us to use Euler’s method and
solve the depressed resultant quartic. In Euler’s method, we first represent one root of the
equation x4 as the addition of 3 square roots

√
A,

√
B and

√
C, where A, B and C were

roots of a regular cubic. Using other manipulations, we found the other 3 roots. One could
simply reverse the substitution of x = y− b

4a
by subtracting b

4a
from each of the roots of the

depressed quartic to get the roots of the regular quartic ie.

p, q, r, s 7→ p− b

4a
, q − b

4a
, r − b

4a
, s− b

4a
.

4. Solving Quintics and Higher Degree Polynomials

4.1. General Approach. In General, the approach to all methods is the same; first repre-
sent 1 root in terms of the root of the polynomial’s resolvent equation. Then perform some
manipulations and substitutions to end up with 2 monic resolvent equations, on which the
values of the other roots can be solved from a system of equations.

4.2. Method to Solving the Depressed Equation. Using a similar approach to the
above, we first take the general form of a depressed quintic equation as

x5 = ax3 + bx2 + cx + d

whose Resolvent Equation would be as follows

z4 = αz3 − βz2 + γz − σ .

In general, for a polynomial with degree n, the equation would be

xn = axn−2 + bxn−3 + cxn−4 + ...

with Resolvent Equation

zn−1 = αzn−2 − βzn−3 + γzn−4 − σzn−5 + ...

whose roots are known with values

x =
n
√
A +

n
√
B +

n
√
C + ...
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4.3. Problem. Here is where the problem occurs with polynomials with a degree higher
than 4. No Resolvent Equation can be derived for such polynomials and Euler explicitly
states ”Although if the given equation has more than four dimensions I am so far not able to
define a resolvent equation”. With famous mathematicians after Euler’s time also proving
that it is not possible to find the resolvent equation of a quintic, this is where the problem
comes to a standstill. Some well-known papers working with the concept of quintics include
the Abol-Ruffini Theorem ( [Żo l00]) and Galois Theory ( [CD20]). However, if someone
were to theoretically figure out the resolvent equation of a quintic, he or she would be able
to apply the same steps shown above to solve for the roots of the quintic. But until then,
Euler’s method is the closest we have to finding a definitive solution for any polynomial with
degree 5 or higher.
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