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It is very well known that

(1+x)" =1+ (Tll)x + (;)xz +oet (Z)a:" = é(g)xk

Euler was curious about the coefficients of the expansion of the expres-
sion (1+x+a2 + 2%+ -+ 2F)" for some k. Throughout this paper, we will

use the notation (?) 41 bo represent the coefficient of the term 2’ in the

expansion of (1 + 2 +z2 + 2% + - + 2F)" (in particular, it is possible that

i>n).

We first look at (1+x+22)™. Let’s compute some expansions for small 7.

(1+z+a23)0=1,
2

(1+z+2°) =1+ +2%

(1+2z+2%)% =1+ 22+ 322 +22° + 2%,

(1+z+2%) =1+3z+6x2 + 72 + 62" + 325 + 25,

(1+z+x?)t=1+42+ 1022 + 162> + 192" + 162° + 102° + 427 + 2,

(1+2+2%)% =1+ 52+ 1527 + 3023 + 45z + 512° + 452° + 3027 + 152° + 52% + 210,

There’s no obvious patterns in the coefficients, asides from the fact that
they’re symmetric. This makes sense, since the the polynomial we’re raising
to a power is symmetric. This gives us that (7)3 = (2:—1')3’ although this
isn’t particularly useful for determining a pattern for the coefficients.

What Euler did now was write the expression as [1 + z(1+z)]”. We can
then use the binomial theorem on this to obtain



n . .
1+ (n)x(l +x)+ (n)xQ(I +)% 4+ (n)x"(l +a)' =) (n)xz(l +x).
1 2 n o\t
We can now express (1 +2)° using the binomial theorem, giving is
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Now we can determine (2)3 We need c =1+ j, so we have that
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For example, we know from our manual calculation of some of these
polynomials above that (i) 5 = 19. Using our expression above, we get that

(4~ 2, G606+ GG GG+ GG (G6o)

To be sure, below is a table for every (7;)3 up till n = 3.

()5=3 ] (§5);=1

These match up with the polynomials computed earlier, so we know
we’re on the right path.

Now let’s look at (1 +z + 22 + 23)". We use the same strategy as before,

writing the expression at [1 +z(1 + 2 + 22?)]". First expanding using the
binomial theorem gives

n

> (?)xz(l +x+ a2

=0

Now we can expand the inside using our result for k = 2. We obtain
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Thus, we have that

()= 2, ()

This is a closed form, but we have three binomials inside a sum that has
(C”;j +k) terms, which can big fast. Not to mention, the closed form looks
kind of ugly with all the binomials. So let’s try to find a different closed
form. In fact, we don’t have to try hard to find a much cleaner closed form.

Go back to this sum:

n

> (?)ml(l +x+x?)h

i=0
Instead of expanding the trinomial all the way, we can expand it as
follows:

NS )2l = ()() .
;(:](z) j;) J73 ;)j;) t/N\)/3
From this, it easily follows that

(e = 006,

c=1+]

Let’s look at k = 5 before we tackle the general case. We can write the
expression as [1+z(1+z+z2+2%)]". Expanding using the binomial theorem
yields

n

> (n)x’(l +z+x? )
i=0 \?
Then using the result for k = 4 gives

() 20)-£20)0)

From this is follows that



We can now prove the general result using induction. We already showed
the base case k = 3. Now assume for some k we have that

(0).- 2 ()6,

To show the result for k + 1, we expand [1+z(1 +z + -+ 2F1)]", which
yields

which yields

Extending Euler’s Results

We can easily extend Euler’s results by considering the inside polynomial
with arbitrary coefficients. For example, if we look at (a + bz + cx?)? and
rewrite it using the same method as for the original trinomial, we obtain

n

> (?)a”_iaci(b +cx)’

i=0
Upon expanding the inside using the binomial theorem and rearranging
yields

S5 ()

Now, if we’re looking for the coefficient of z*, we obtain that the coeffi-

cient is
k=i+j XAV,

As ugly as this looks, it does extend Euler’s result to an arbitrary poly-
nomial. The case a =b=c=1 was Euler’s original result.



In fact, there’s a much easier way to derive these results using the multi-
nomial theorem. By the multinomial theorem, the coefficient of ™ for the
general trinomial is

n . .
(_ . )azb]ck.
m=i+j+k BWE k

Note that in our original formula, we have

n! 7! n!

(7;)(;) Tailn—a) gli-g) (n—z’)!(;—j)!j! ) (n—i,?—j, j)’

so the two forms are essentially equivalent.

In particular, applying the multinomial theorem to an arbitrary polyno-
mial ag + a1z + -+ + azz® to the nth power yields that the coefficient of z™
is

n
( )ago alf ---azk.
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