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It is very well known that

(1 + x)n = 1 + (n
1
)x + (n

2
)x2 +⋯ + (n

n
)xn =

n

∑
k=0

(n
k
)xk.

Euler was curious about the coefficients of the expansion of the expres-
sion (1 + x + x2 + x3 +⋯ + xk)n for some k. Throughout this paper, we will
use the notation (n

i
)
k−1 to represent the coefficient of the term xi in the

expansion of (1 + x + x2 + x3 + ⋯ + xk)n (in particular, it is possible that
i > n).

We first look at (1+x+x2)n. Let’s compute some expansions for small n.

(1 + x + x2)0 = 1,

(1 + x + x2)1 = 1 + x + x2,
(1 + x + x2)2 = 1 + 2x + 3x2 + 2x3 + x4,
(1 + x + x2)3 = 1 + 3x + 6x2 + 7x3 + 6x4 + 3x5 + x6,
(1 + x + x2)4 = 1 + 4x + 10x2 + 16x3 + 19x4 + 16x5 + 10x6 + 4x7 + x8,
(1 + x + x2)5 = 1 + 5x + 15x2 + 30x3 + 45x4 + 51x5 + 45x6 + 30x7 + 15x8 + 5x9 + x10.

There’s no obvious patterns in the coefficients, asides from the fact that
they’re symmetric. This makes sense, since the the polynomial we’re raising
to a power is symmetric. This gives us that (n

i
)
3
= ( n

2n−i)3, although this
isn’t particularly useful for determining a pattern for the coefficients.

What Euler did now was write the expression as [1 + x(1 + x)]n. We can
then use the binomial theorem on this to obtain
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1 + (n
1
)x(1 + x) + (n

2
)x2(1 + x)2 +⋯ + (n

n
)xn(1 + x)n =

n

∑
i=0

(n
i
)xi(1 + x)i.

We can now express (1 + x)i using the binomial theorem, giving is

n

∑
i=0

(n
i
)xi

i

∑
j=0

(i
j
)xj =

n

∑
i=0

i

∑
j=0

(n
i
)(i

j
)xi+j .

Now we can determine (n
c
)
3
. We need c = i + j, so we have that

(n
c
)
3
= ∑

c=i+j
(n
i
)(i

j
).

For example, we know from our manual calculation of some of these
polynomials above that (4

4
)
3
= 19. Using our expression above, we get that

(4

4
)
3
= ∑

4=i+j
(4

i
)(i

j
) = (4

0
)(0

4
) + (4

1
)(1

3
) + (4

2
)(2

2
) + (4

3
)(3

1
) + (4

4
)(4

0
)

= 0 + 0 + 6 + 4 ⋅ 3 + 1 = 19.

To be sure, below is a table for every (n
i
)
3

up till n = 3.

(0
0
)
3
= 1

(1
0
)
3
= 1 (1

1
)
3
= 1 (1

2
)
3
= 1

(2
0
)
3
= 1 (2

1
)
3
= 3 (2

2
)
3
= 3 (2

3
)
3
= 2 (2

4
)
3
= 1

(3
0
)
3
= 1 (3

1
)
3
= 3 (3

2
)
3
= 6 (3

3
)
3
= 7 (3

4
)
3
= 6 (3

5
)
3
= 3 (3

6
)
3
= 1

These match up with the polynomials computed earlier, so we know
we’re on the right path.

Now let’s look at (1 + x + x2 + x3)n. We use the same strategy as before,
writing the expression at [1 + x(1 + x + x2)]n. First expanding using the
binomial theorem gives

n

∑
i=0

(n
i
)xi(1 + x + x2)i.

Now we can expand the inside using our result for k = 2. We obtain
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n

∑
i=0

(n
i
)xi

⎡⎢⎢⎢⎢⎣

i

∑
j=0

j

∑
k=0

(i
j
)(j

k
)xj+k

⎤⎥⎥⎥⎥⎦
=

n

∑
i=0

i

∑
j=0

j

∑
k=0

(n
i
)(i

j
)(j

k
)xi+j+k.

Thus, we have that

(n
c
)
4
= ∑

c=i+j+k
(n
i
)(i

j
)(j

k
)xi+j+k.

This is a closed form, but we have three binomials inside a sum that has
(c+i+j+k

2
) terms, which can big fast. Not to mention, the closed form looks

kind of ugly with all the binomials. So let’s try to find a different closed
form. In fact, we don’t have to try hard to find a much cleaner closed form.
Go back to this sum:

n

∑
i=0

(n
i
)xi(1 + x + x2)i.

Instead of expanding the trinomial all the way, we can expand it as
follows:

n

∑
i=0

(n
i
)xi

2i

∑
j=0

(i
j
)
3

xj =
n

∑
i=0

2i

∑
j=0

(n
i
)(i

j
)
3

xi+j .

From this, it easily follows that

(n
c
)
4
= ∑

c=i+j
(n
i
)(i

j
)
4

.

Let’s look at k = 5 before we tackle the general case. We can write the
expression as [1+x(1+x+x2+x3)]n. Expanding using the binomial theorem
yields

n

∑
i=0

(n
i
)xi(1 + x + x2 + x3)i.

Then using the result for k = 4 gives

n

∑
i=0

(n
i
)xi

3i

∑
j=0

(i
j
)
4

xj =
n

∑
i=0

3i

∑
j=0

(n
i
)(i

j
)
4

xi+j .

From this is follows that

(n
c
)
5
= ∑

c=i+j
(n
i
)(i

j
)
4

.
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We can now prove the general result using induction. We already showed
the base case k = 3. Now assume for some k we have that

(n
c
)
k
= ∑

c=i+j
(n
i
)(i

j
)
k−1

.

To show the result for k + 1, we expand [1+x(1+x+⋯+xk−1)]n, which
yields

n

∑
i=0

(k−1)i
∑
j=0

(n
i
)(i

j
)
k

xi+j ,

which yields

(n
c
)
k+1

= ∑
c=i+j

(b
i
)(i

j
)
k

.

Extending Euler’s Results

We can easily extend Euler’s results by considering the inside polynomial
with arbitrary coefficients. For example, if we look at (a + bx + cx2)2 and
rewrite it using the same method as for the original trinomial, we obtain

n

∑
i=0

(n
i
)an−ixi(b + cx)i.

Upon expanding the inside using the binomial theorem and rearranging
yields

n

∑
i=0

i

∑
j=0

(n
i
)(i

j
)an−ibi−jcjxi+j .

Now, if we’re looking for the coefficient of xk, we obtain that the coeffi-
cient is

∑
k=i+j

(n
i
)(i

j
)an−ibi−jcj .

As ugly as this looks, it does extend Euler’s result to an arbitrary poly-
nomial. The case a = b = c = 1 was Euler’s original result.
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In fact, there’s a much easier way to derive these results using the multi-
nomial theorem. By the multinomial theorem, the coefficient of xm for the
general trinomial is

∑
m=i+j+k

( n

i, j, k
)aibjck.

Note that in our original formula, we have

(n
i
)(i

j
) = n!

i!(n − i)!
i!

j!(i − j)! =
n!

(n − i)!(i − j)!j! = ( n

n − i, i − j, j),

so the two forms are essentially equivalent.

In particular, applying the multinomial theorem to an arbitrary polyno-
mial a0 + a1x + ⋯ + akxk to the nth power yields that the coefficient of xm

is

∑
m=b0+b2+⋯+bk

( n

b0, b1, ⋯, bk
)ab00 ab11 ⋯a

bk
k .
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