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We report the investigation for the general solutions to diophantine equations of form

2a4 − b4 = c2 and 3a4 + b4 = c2. As a bonus, we also discuss Euler’s conjecture on the

diophantine a4 = b4 + c4 + d4, which was disproved by Elkies (1988).

1. Introduction

This section will discuss Euler’s creation of general methodology in approaching quartic

diophantines that equal to a square. Of note, see the following equation:

a2x4 + 2abx3y + cx2y2 + 2bdxy3 + d2y4 = N2

So noting the terms of a2x4, d2y4, and the other terms excluding the middle, we rewrite as

(ax2 + bxy + dy2)2 + (c− b2 − 2ad)x2y2 = N2

For simplicity let c− b2 − 2ad = mn, ax2 + bxy + dy2 = λ(mp2 − nq2), xy = 2λpq.

Remarkably, we end with

λ2(mp2 − nq2)2 +mn4λ2p2q2 = λ2(m2p4 + n2q4 + 2mnp2q2

λ2(mp2 + nq2)2 = N2

Surely, we end up with a square.

We are permitted to let x = 2λpq with unity in place of y, IF we allow fractions, such that

ax2 + bxy + dy2 = λ(mp2 − nq2)

4λ2ap2q2 + 2λbpq + d = λmp2 − λnq2

This is a quadratic equation, and we can calculate the roots for p and q.

p =
−λbq ±

√
λmd+ λ2q2(b2 − 4ad+mn)− 4λ3naq4

4λ2q2a− λm

q =
−λbp±

√
−λnd+ λ2p2(b2 − 4ad+mn) + 4λ3naq4

4λ2p2a+ λn

With λ of so many possibilities, Euler proves that there must exist such a value where the

square root exists. Then, also say p and q were found. We construct some series as follows,

to find other roots:
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p+ p′ = − 2bq

4λaq2 +m

q + q′ = − 2bp

4λap2 + n

Thus, Euler avoided finding values of other values tediously as long as some solution was

found for the diophantine. The following series follows:

p′ =
−2bq

4λaq2 −m
− p; q′ =

−2bp′

4λap′2 + n
− q

p′′ =
−2bq′

4λaq′2 −m
− p′; q′ =

−2bp′′

4λap′′2 + n
− q′

· · ·

And even better, this works for series of (q, p), (q′, p′), (q′′, p′′) · · · Thus:

x = 2λpq, 2λqp′, 2λp′q′ · · ·

OR,

2λqp, 2λpq′, · · ·

under assumption that y = 1. But any fractions that arise here shouldn’t be a concern since

we may assign the denominator for y, numerator for x.

Now, let y = 1, and solve for the following quartic equation:

a2x4 + 2abx3 + cx2 + 2bdx+ d2 = (ax2 + bx− d)2

Then,

x =
4bd

b2 − 2ad− c
=

−4bd

mn+ 4ad
, c = mn+ b2 + 2ad

ax2 + bx+ d

x
= A, mp2 − nq2 = 2Apq

p

q
=

A+
√
A2 +mn

m

where we can extract all the roots.

Such formulas can be reduced effectively given the following situation, though:

αA4 ± βB4 = N2

Let C = 1+x
1−x

and α+ β = a2 given A
B
= C, αC4± β = N2, which then α± β = N2 by letting

C = 1. Then,

a2 + 4(α− β)x+ 6a2x2 + 4(α− β)x3 + a2x4

So this is the general methodology of Euler.
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2. The First Form: 2A4 −B4 = N2

Here, this case would be that 2C4 − 1 = N2, so α = 2, β = −1, α + β = 1 = a2, a = 1.

Thus we have that

1 + 12x+ 6x2 + 12x3 + x4 = N2

(1 + 6x+ x2)2 − 32x2 = N2

So

1 + 6x+ x2 = λ(p2 + 2q2) and 4x = 2λpq

Then x = 1
2
λpq and to avoid fractions say q = 2q,

1 + 6λpq + λ2p2q2 = λp2 + 8λq2

p =
−3λq ±

√
8λ3q4 + λ

λ2q2 − λ
, q =

−3λp±
√

8λ3p4 + λ

λ2p2 − 8λ

p+ p′ =
−6q

λq2 − 1
and q + q′ =

−6p

λp2 − 8

And thus we can construct the following series where:

q′ =
−6p

p2 − 8
− q; p′ =

−6q′

q′2 − 1
− p

q′′ =
−6p′

p′2 − 8
− q′; p′′ =

−6q′′

q′′2 − 1
− p′

· · ·

Thus, by letting (q, p) = (0, 1) we get the following cases:

0; 1;
6

7
;
239

19
; · · ·

Then we take these values and multiply neighboring pairs to get x. For instance, 0×1, 1×
6
7
, · · · .

x = 0,
6

7
,
1434

91
, · · · , and C = 1, 13,

−1525

1343
We can in fact use other values in the series to let (q, p) = (1, 6

7
) and evaluate differ-

ent series. And thus we can find the general solutions to the diophantine without heavy

computations.

3. The Second Form: 3A4 +B4 = N2

So we apply the same logic to deduce 3C4 + 1 = N2.
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Here, note that there are easy cases that can be found such as C = 0, 1, 2. Since α =

3 and β = 1, we get

4+8x+24x2+8x3+4x4 = N2, 1+2x+6x2+2x3+x4 = N2, then (1+x+x2)2+3x2 = N2

So following the same steps we get x = 2pq where:

x =
−4

7
,
231

448
, so C =

−3

11

. √
3C4 + 1 =

122

121
. And we are done.

4. Bonus Enrichment: Euler’s Conjecture on Diophantines

This was an interesting conjecture proposed by Euler that any diophantine of a4 = b4+c4+

d4 would be insoluble. Elkies disproves this fact using the parameterization of surface r4 +

s4 + t4 = 1 and elliptic curves to find the existence of a rational point. One counterexample

is:

26824404 + 153656394 + 187967604 = 206156734.
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