
Unravelling Euler’s ingenious Integration:
A Comprehensive Analysis of E695.

Krishna Praneeth Sidde

August 19, 2023

Abstract

In this paper, we will provide an exposition of Euler’s 1797 paper, “Integratio
Succincta Formulae Integralis Maxime Memorabilis” (E695), in which Euler calculated
a titular integral using a series of intricate substitutions and innovative ideas.

1 Introduction

In this section, we will firstly discuss about several results1 which were commonly used in
Euler’s day, and will also be used further along the paper as we solve Euler’s integral formula.
Eventually, we will define the integral formula that Euler solved in his paper2 [Eul97], and
define the substitutions Euler used in solving the integral. By the end of this section, we
hope to get an idea of how Euler approached to solve the proposed integral formula.

Theorem 1.1.

arctan (x)− arctan (y) = arctan

(
x− y

1 + xy

)
if x > 0, y > 0, and xy < 1.

Proof. Let α = arctan (x) and β = arctan (y). Then, clearly x = tanα and y = tan β. Now,

tan (α− β) =
tanα− tan β

1 + tanα tan β

=⇒ tan (α− β) =
x− y

1 + xy

Hence,

α− β = arctan
x− y

1 + xy

=⇒ arctanx− arctan y = arctan
x− y

1 + xy
.

1Note that these results were proved in Euler’s paper, and were assumed to be already known by the
reader. We will still add these though, to make the exposition much easier to understand.

2Although we cite the original text of Euler’s paper, we have followed through the translated version of
the paper as well, and it can be found at http://eulerarchive.maa.org/docs/translations/E695en.pdf
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We will still consider the limits x > 0, y > 0, and xy > 1 so that the equation is defined in
R. ■

Theorem 1.2. ∫
dp

1− p3
=

1

3
ln

√
1 + p+ p2

1− p
+

1√
3
arctan

p
√
3

2 + p
.

Proof. Using partial fractions, we can evaluate the integral as∫
dp

1− p3
=

∫ (
p+ 2

3(p2 + p+ 1)
− 1

3(p− 1)

)
dp.

Solving this integral, we get that∫ (
p+ 2

3(p2 + p+ 1)
− 1

3(p− 1)

)
dp =

1

3

∫
p+ 2

3(p2 + p+ 1)
dp− 1

3

∫
1

3(p− 1)
dp

=
1

3
ln

√
1 + p+ p2

1− p
+

1√
3
arctan

p
√
3

2 + p
.

■

Theorem 1.3. For some value of x ∈ R,

1 + x+ x2 =
1− x3

1− x
.

Proof. The proof of this theorem is very simple. We can see that (1 − x3) can be factored
in the form

(1− x3) = (1− x)(1 + x+ x2).

One can easily check this through the Polynomial Long Division Method, and hence, we
obtain the desired equation. ■

Theorem 1.4.

arctan (t
√
−1) =

∫ √
−1

1− t2
dt =

√
−1

2
ln

1 + t

1− t
.

Proof. We already know that ∫
dx

1− x2
= arctanx.

So it is clear that

arctan (t
√
−1) =

∫ √
−1

1− t2
dt.

Now, we will try to solve this integral using partial fractions.∫ √
−1

1− t2
dt =

√
−1

∫ (
1

1 + t

)(
1

1− t

)
dt

=
√
−1

(∫
1

2(1 + t)
+

1

2(1− t)
dt

)
=

√
−1

2
(ln |1 + t| − ln |1− t|)

=

√
−1

2
ln

1 + t

1− t
.
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■

In [Eul97], Euler focuses on solving the integral of the form∫
dz

(3± z2) 3
√
1± 3z2

. (1.1)

In doing so for the positive case first, he uses the substitution v = 3
√
1 + 3z2, and then con-

siders p = 1+z
v

and q = 1−z
v
. With the help of Theorem 1.3 and through clever manipulation

of these substitutions, Euler obtains a generalized differential formula of the form discussed
in Theorem 1.2. Then, he further evaluates the integral using Theorem 1.1 and after several
other substitutions, he finally evaluate the integral. For the negative case, he uses the same
solution as he considers a substitution to represent the integral in the form of the positive
case of (1.1). Then, using Theorem 1.4, and several other substitutions, he further evaluates
the negative case of the proposed integral, eventually eliminating the imaginary numbers.

2 The most Memorable Integral Formula

In Euler’s words, (1.1) was considered as “The most Memorable Integral Formula”, and
in this section, we will try understand how that actually makes sense. We will first solve
this integral through substitutions , and develop a sense of the ultimate solution throughout
this section.

2.1 The Positive Case

We will first consider the integral with the positive signs, and let

dV =
dz

(3 + z2) 3
√
1 + 3z2

. (2.1)

Using the substitution v3 = 1 + 3z2, we obtain that

3v2dv = 6zdz

dz =
v2

2z
dv.

Hence, we can rewrite (2.1) as

dV =
v

2z(3 + z2)
dv. (2.2)
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Now, let p = 1+z
v

and q = 1−z
v

such that

p3 + q3 =
2 + 6z2

v3
= 2,

p3 − q3 =
2z3 + 6z

v3
=

2z(3 + z2)

v3
,

p+ q =
2

v
,

p− q =
2z

v
,

pq =
1− z2

v2
, and

v(dp+ dq) + dv(p+ q) = 0 =⇒ dp+ dq = − 2

v2
dv.

(2.3)

Rewriting (2.2),

dV = − v3(dp+ dq)

2v3(p3 − q3)

dV = − dp+ dq

2(p3 − q3)

= − dp+ dq

(p3 + q3)(p3 − q3)
.

Thus,

dV = − dp+ dq

2(p3 − q3)
.

We will now try to split this formula into two parts and use Theorem 1.2 to evaluate this
equation. Let

dP =
dp

p3 − q3
, and dQ =

dq

p3 − q3
.

Then,

dV = −1

2
dP − 1

2
dQ. (2.4)

From (2.3), since p3 + q3 = 2, we can observe that

dP = − dp

2(1− q3)
, and dQ =

dq

2(1− q3)
.

Hence, we can rewrite (2.4) as

4dV =
dp

1− p3
− dq

1− q3
.

Using Theorem 1.2, we can evaluate this differential equation as

4V =

∫
dp

1− p3
−
∫

dq

1− q3
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4V =

(
1

3
ln

√
1 + p+ p2

1− p
+

1√
3
arctan

p
√
3

2 + p

)

−

(
1

3
ln

√
1 + q + q2

1− q
+

1√
3
arctan

q
√
3

2 + q

) (2.5)

Using Theorem 1.3, we can observe that 1 + p+ p2 = 1−p3

1−p
, and thus,

4V =

(
1

6
ln

1− p3

(1− p)3
+

1√
3
arctan

p
√
3

2 + p

)

−

(
1

3
ln

1− q3

(1− q)3
+

1√
3
arctan

q
√
3

2 + q

)

=⇒ 4V =
1

6

(
ln

1− p3

(1− p)3
− ln

1− q3

(1− q)3

)
+

1√
3

(
arctan

p
√
3

2 + p
− arctan

q
√
3

2 + q

)
.

Through logarithmic manipulation, and Theorem 1.1, we can see that

ln
1− p3

(1− p)3
− ln

1− q3

(1− q)3
= ln

1− p3

1− q3
− ln

(1− p)3

(1− q)3
, and

arctan
p
√
3

2 + p
− arctan

q
√
3

2 + q
= arctan

(p− q)
√
3

2 + p+ q + 2pq
.

Furthermore, we also know that 1− p3 = q3 − 1 = −(1− q3), so we would get the term
ln
√
−1, which Euler treats as a constant in [Eul97], and omits the indeterminate complex

quantity, thus obtaining

4V =
1

6
ln

(1− p)3

(1− q)3
+

1√
3
arctan

(p− q)
√
3

2 + p+ q + 2pq

4V =
1

2
ln

1− p

1− q
+

1√
3
arctan

(p− q)
√
3

2 + p+ q + 2pq
.

Retracing this equation back to v and z using p = 1+z
v

and q = 1−z
v
, we get that

1

2
ln

1− p

1− q
=

1

2
ln

v − 1− z

v − 1 + z
=

1

2
ln

1− v − z

1− v + z
, and

1√
3
arctan

(p− q)
√
3

2 + p+ q + 2pq
=

1√
3
arctan

(
2z
v

)√
3

2 + 2
v
+ 2

(
1−z2

v2

) =
1√
3
arctan

vz
√
3

1 + v + v2 − z2
.
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Therefore,

4V =
1

2
ln

1− v − z

1− v + z
+

1√
3
arctan

vz
√
3

1 + v + v2 − z2

=⇒ V =
1

8
ln

1− v − z

1− v + z
+

1

4
√
3
arctan

vz
√
3

1 + v + v2 − z2

where v is equal to 3
√
1 + 3z2.

2.2 The Negative Case

We will now solve the integral with the negative signs, and let z = y
√
−1 in (2.1), which

gives us that

dV =
dy

√
−1

(3− y2) 3
√

1− 3y2
. (2.6)

When we consider z as y
√
−1, we get an integral which is of the same form as the one

we just solved in §2.1, so we can show that (2.6) is just equal to

1

8
ln

1− v − y
√
−1

1− v + y
√
−1

+
1

4
√
3
arctan

vy
√
3
√
−1

1 + v + v2 + y2
, (2.7)

where v = 3
√

1− 3y2.

However, we can further evaluate (2.6) through Theorem 1.4 by considering t as vy
√
3

1+v+v2+y2
.

Then,

arctan (t
√
−1) =

√
−1

3
ln

1 + v + v2 + y2 + vy
√
3

1 + v + v2 + y2 − vy
√
3
. (2.8)

By considering t = u
√
−1 and through Theorem 1.4, we will get that

− arctanu =

√
−1

2
ln

1 + u
√
−1

1− u
√
−1

=⇒ 2
√
−1 arctanu = ln

1 + u
√
−1

1− u
√
−1

.

Now, we know that t = u
√
−1 and for our case, when we compare the above equation

with the first term on the right hand side in (2.7), we can see that u = − y
1−v

. Hence,

2
√
−1 arctan

(
− y

1− v

)
= ln

1− v − y
√
−1

1− v + y
√
−1

. (2.9)

With these values [(2.8) and (2.9)], we can rewrite the solution for the integral, (2.7) as

∫
dy

√
−1

(3− y2) 3
√

1− 3y2
= −

√
−1

4
arctan

y

1− v
+

√
−1

8
√
3
ln

1 + v + v2 + y2 + vy
√
3

1 + v + v2 + y2 − vy
√
3
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Here, we divide both side by
√
−1 to eliminate the imaginary numbers so that we can

obtain the integration∫
dy

(3− y2) 3
√

1− 3y2
=

1

8
√
3
ln

1 + v + v2 + y2 + vy
√
3

1 + v + v2 + y2 − vy
√
3
− 1

4
arctan

y

1− v

Since v = 3
√

1− 3y2, 3y2 = 1 − v3 and multiplying the fraction joined to the logarithm
above and below by (1− v), the fraction would be equal to

(1− v)(1 + v + v2 + y2 + vy
√
3)

(1− v)(1 + v + v2 + y2 − vy
√
3)

=
y(4− v) + v(1− v)

√
3

y(4− v)− v(1− v)
√
3
.

Therefore, the integral takes the form∫
dy

(3− y2) 3
√

1− 3y2
=

1

8
√
3
ln

y(4− v) + v(1− v)
√
3

y(4− v)− v(1− v)
√
3
− 1

4
arctan

y

1− v
,

where v = 3
√

1− 3y2.
This was essentially the method Euler used to solve the proposed integral formula, (1.1).

However, Euler also mentioned about another approach in [Eul97], where he obtains a dif-
ferential formula through the proposed integral formula. We will look at that in the next
section.

3 A succinct Differential Formula

Although we have beautifully shown how the integral is solved above, we will explore
another approach to the solution in this formula using the substitution z = 1+x

1−x
. We will then

use logarithmic differentiation to produce a differential equation, whose solution we won’t
evaluate further, but should be the same as the once discussed above. This is supposedly a
much easier and a comprehended approach to solve the proposed formula by Euler.

Let z = 1+x
1−x

. Then,

dz =
dx(1− x) + (1 + x)dx

(1− x)2
=

2dx

(1− x)2
,

3 + z2 =
4− 4x+ 4x2

(1− x)2
=

4(1 + x3)

(1 + x)(1− x)2
,

1 + 3z2 =
4(1− x3)

(1− x)3
=⇒ 3

√
1 + 3z2 =

3
√

4(1− x3)

1− x
.

Using these substitutions, we can rewrite (2.1) as

dV =
1

2 3
√
4
· (1− x2)

(1 + x3) 3
√
1− x3

dx.

Using partial fractions, we could represent the integration of the above formula as
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2
3
√
4V =

∫
dx

(1 + x3) 3
√
1− x3

−
∫

x2dx

(1 + x3) 3
√
1− x3

. (3.1)

Let t = x
3√1−x3

. Then, x3 = t3

1+t3
and when we try to differentiate x3 using logarithmic

differentiation,

lnx3 = ln
t3

1 + t3

1

x3
(3x2)

dx

dt
=

(
1 + t3

t3

)(
3t2(1 + t3)− t3(3t2)

(1 + t3)2

)
3

x

dx

dt
=

3

t(1 + t3)

=⇒ dx

x
=

dt

1(1 + t3)
.

For the later part of the integral, we will make a different substitution. Let u = 3
√
1− x3,

which then can be interpreted as x3 = 1 − u3. Then, 1 + x3 = 2 − u3 and through implicit
differentiation, we obtain that x2dx = −u2du. Using these equations we can rewrite the
second part of the integral in (3.1) as∫

x2dx

(1 + x3) 3
√
1− x3

= −
∫

udu

2− u3
.

Thus, (3.1) can be written as

2V
3
√
4 =

∫
dt

1 + 2t3
+

∫
udu

2− u3
. (3.2)

In this way, Euler transforms the proposed formula into two other succinct formulas,
through which, Euler realized that the proposed formula could be solved through understood
rules. However, it is easily visible that the final formula in (3.2) is much more easily obtained
by our method in §2 than if we wished to evaluate (3.2) further. This was the main reason
Euler further reinstated the title of “The Most Memorable Integral Formula” mostly to the
other method of the solution, which he believed to snatch away the victory as the solution
for the proposed formula.

Furthermore, when we wish to handle the other case of the formula

dz

(3− z2) 3
√
1− 3z2

in the same manner, we would want to substitute z = 1+x
1−x

√
−1, and the integration could

not be presented unless by proceeding by the means of imaginary numbers. This was where
Euler ended his paper [Eul97], as he urged for the use of the Calculus of Imaginary numbers
in integral calculus. Eventually, Euler discussed about this integral formula once again in his
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paper 1801 paper3 titled “De insigni usu calculi imaginariorum in calculo integrali” [Eul01],
where he talks about several other integral formulas as well, which he solves thoroughly
solves through the use of imaginary numbers and methods from complex analysis.
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