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Abstract

In this paper, I will give a sampling of some of Euler’s techniques
for summing the series sin(¢)® + sin(2¢)* + ...sin(n¢)* and cos(¢)* +
cos(2¢)> + ... cos(ng)*. This material is mostly based on [E447].

1 Expressions to aid in summation

Assign p and ¢ to be the following:

p = cos(¢) +isin(¢) = §(e¢ +e? )+12—i(e¢ —e %) =¢?
L (et em0iy = o9

q = cos(¢) — isin(¢) = %(em +e %) — i2i

From these definitions:

1 . , 1
cos(ng) = L e = Lor gy
sin(ng) = %(e —e ") = Z(p —q") (1.2)
pg=e?"% =1 (1.3)

Summing the powers of p® and ¢ then yields (as they are both geometric
series):
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Theorem 1. Z?Zl(pja +¢7Y) = COS(MT):CZZ?S;’)H)“@ -1



Proof.
(el (n+1)a q* — q(n+1)a
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1— pa _ qa + 1@ ( y )
p* + ¢~ _p(n+1)a _ q(n+1)a — 24 pne 4 gne _
2 cos(ag) — 2cos((n + 1)ag) — 2+ 2cos(nag)  cos(nag) — cos((n + 1)ag) 4
2 — 2 cos(ag) B 1 — cos(ag)

The above expression was obtained by multiplying both sides of 1.1 by 2 and
plugging in a, (n+ 1), and na for n. O

o o sin(a¢)—sin((n+1)«a sin(nao .
Theorem 2. Z?:1(p7 — i) = sin(ed) 1(£C;:(L¢¢;)+ (nao) ;
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2 — 2 cos(ag) B

sin(a¢) — sin((n + 1)ag) + sin(nag) .

1 — cos(ag) !

The above expression was obtained by multiplying both sides of 1.2 by 2i and
plugging in «, (n + 1)a, and na for n, and by multiplying both sides of 1.1 by
2 and plugging in « for n. O



2 Example 1: A\=7

The two series we are summing are Z:;-Lzl(sin(j(b))7 and Z?Zl(cos(jqb))?.

n n

1.
(sin(j))" =Y ==’ —¢')" =
ég (P =Tp¥ ¢’ +21p™ ¢* —35p™ ¢ +35p% ¢ —21p* 4™ +Tp? ¢¥ —¢") =
j=1
128 " 72 (P17 = Vg)+
j:l
21 zn:(p?’jﬁi 127 p37) Zn: /1% —1%¢7)) =
=1 =1

sin(7¢) — sin(7(n + 1)¢) + sin(?n(b) sin(5¢) — sin(5(n + 1)¢) + sin(bne)
a 128(1 — cos(7¢)) 128(1 — cos(5¢)) a

21sim(3(;5) —sin(3(n + 1)) + sin(3ne) 435 sin(¢) — sin((n + 1)¢) + sin(ng)

128(1 — cos(3¢)) 128(1 — cos(¢))

Note that the initial sum of sines was transformed into a sum of powers of ps
and ¢s by application of 1.2. That sum was then expanded out and simplified
by 1.3. The resulting 4 sums were then converted into fractions of sines and
cosines using Theorem 2.
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128 (p7J +7p8% 7 4+21p% ¢% 4 35p* ¢34 35p% ¢4 +21p% 5T + Tp7 g% +q7J) =
j=1

O -7 +47) + 7Y (71 + g%+

Jj=1 Jj=1

L
128

21> (p¥1% +1%p¥) 435> (P11 +1%¢0)) =
j=1 Jj=1
cos(Tng) — cos(7(n + 1)¢) n 7cos(5n¢) —cos(b(n+1)¢)
128(1 — cos(7¢)) 128(1 — cos(59))
1cos(3nq5) —cos(3(n+1)¢) n 35cos(n¢>) —cos((n+1)¢) 1

128(1 — cos(39)) 128(1 — cos(¢)) 32
Note that the initial sum of cosines was transformed into a sum of powers of ps
and ¢s by application of 1.1. That sum was then expanded out and simplified
by 1.3. The resulting 4 sums were then converted into fractions of cosines using
Theorem 1.




3 Example 2: A =11

The two series we are summing are Z:;;l(sin(j(b))11 and Z?Zl(cos(jq’)))u

20 Z W 11p'%¢7 + 55p%7 ¢* — 165p™ ¢* + 330p™ ¢ — 462p% ¢*/ +

462p5J q% — 330p* ¢ 4+ 165p¥ ¢% — 55p¥ g% + 11p7 "% — ¢'17) =

20148 (Z(pllj 113 Z 9]1j - qu9j) +55 Z(p7j12j . 12jq7j)7
Jj=1 Jj=1 Jj=1

1652(p5j13j—13jq5j)+3302(p3j14] 14737y 4622 P15 —15940)) =

Jj=1

_ sin(11¢) —sin(11(n + 1)¢) + sin(11ng) +1lsln(9¢) - 51n(9(n +1)¢) +sin(9n¢)

2048(1 — cos(119¢)) 2048(1 — cos(99¢))
sin(7¢) — sin(7(n + 1)¢) + sin(7ng) sin(5¢) — sin(5(n + 1)¢) + sin(5ng)
5 2048(1 — cos(7¢)) +165 2048(1 — cos(5¢)) B
sin(3¢) — sin(3(n + 1)¢) + sin(3ng) sin(¢) — sin((n + 1)¢) + sin(ng)
330 2048(1 — c0s(30)) 462 2043(1 — cos(d))

Note that the initial sum of sines was transformed into a sum of powers of ps
and ¢s by application of 1.2. That sum was then expanded out and simplified
by 1.3. The resulting 6 sums were then converted into fractions of sines and

cosines using Theorem 2.

S (eos(io) = D s+ a)"
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cos(11ng) — cos(11(n + 1)¢) cos(9Ing) — cos(9(n + 1)¢)
2048(1 — cos(11¢)) 1 2048(1 — cos(9¢)) *




cos(Tng) — cos(7(n + 1)¢) cos(bng) — cos(5(n + 1)o)

P08 —cos(70)) T 00T 2048(1 = cos(59))
cos(3ng¢) — cos(3(n + 1)) cos(ng) — cos((n + 1)¢) 3
330 2048(1 — cos(3¢)) 462 2048(1 — cos(¢)) 1024

Note that the initial sum of cosines was transformed into a sum of powers of ps
and ¢s by application of 1.1. That sum was then expanded out and simplified
by 1.3. The resulting 6 sums were then converted into fractions of cosines using
Theorem 1.

4 Infinite versions of the series

Note that for even ), as neither lim, o sin(z¢)* nor lim, ., cos(z¢)* are
defined (this is technically also true for odd A, but in that case the sum diverges),
and as 0 < sin(z¢)*, for even A 3777, sin(j¢) and Y272 cos(j¢) can both be
said to be oco. However, taking A = 7 as an example gives (omitting terms
having j in them because they are undefined, but still between —1 and 1):

sin(7¢) 7sin(5¢) 21sin(3¢) n 35sin(¢)

;Sin(my T T128(1 — cos(79)) | 128(1 — cos(5¢))  128(1 — cos(3¢)) | 128(1 — cos(¢))

3ot = =

And for A = 11:

SN sin(11¢) 11sin(9¢) 55 sin(7¢)

jz_; S9) =~ 300801 — cos(119)) T 2048(1 — cos(99))  2048(1 — cos(79))
165 sin(5¢) 330sin(3¢) 462 sin ()

2048(1 — cos(5¢))  2048(1 — cos(3¢)) ' 2048(1 — cos(e))
- N T
;COS(J@ = 1021

Note that the above equals signs are not rigorous, as they are more similar
to the equals sign in the statement > (27 = —1.



