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1 Introduction

For large positive integers, it is quite difficult to prove that a number is prime, as we must
check each possible prime divisor up to the square root of said number. While computers
have sped this process up in the past decades, no such aid existed in the 18-th century,
and therefore mathematicians had to manually find the possible divisors. Fortunately, Euler
devised a more efficient method to check for primes that are equivalent to 1 (mod 4): If a
number n can only be written as the sum of two squares for one unique pair of squares, n is
prime, and otherwise, if there are at least two sums, or even none at all, n is composite. This
is quite an unintuitive result, as, at first, there seems to be no connection between primes
and squares, and yet there is actually an interesting relationship between them.

More specifically, in his 1758 paper, On numbers which are the sum of two squares (E228),
Euler starts by proving some simple properties of sums of two squares: For instance, the
product of two sums of two squares is also a sum of two squares, and if a product is a sum
of two squares and has one prime factor that is a sum of two squares, the complementary
factor is also a sum of two squares. Using these results, Euler is then able to prove that
sums of two relatively prime squares can only be divided by sums of two squares. Finally, in
addition to the aforementioned test for primes, Euler partially proves Fermat’s Theorem on
Sums of Two Squares as another major result of his paper. Euler displays the importance
of his primality test by determining whether large numbers with remainder 1 (mod 4) are
prime and, if they are not, finds their factors. He accomplishes this substantially faster than
mathematicians of his century would have otherwise been able to. This new criterion has
served as a starting point to the search of more efficient methods, now used to factor large
numbers with the help of computers.

In our paper, we will be following in Euler’s footsteps and prove his theorems, hopefully
in a clearer and more concise fashion (such as by combining similar cases in proofs together,
or by explaining unclear manipulations and results). Additionally, we will also be looking at
another one of Euler’s papers (E241) in order to complete his proof of Fermat’s Theorem on
Sums of Two Squares. Like Euler, we will end our paper by demonstrating the usefulness of
his primality test, with an implementation in Python — which, of course, did not exist in
Euler’s time.
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2 Fundamentals

We begin by investigating some fundamental properties of sums of two squares, which will,
for instance, allow us to only consider odd sums of two squares.

As a simple definition, a sum of two squares is defined as a number that can be written
as x2+y2, where x, y are nonnegative integers. Also, the sum x2+y2 is considered equivalent
to y2 + x2. Using this definition, Euler lists the numbers less than 200 that are sum of two
squares, but there is no pattern other than the definition that creates the list.

However, at the very least, we know what remainder the numbers in the list have when
divided by 4 or 8. The squares x2 and y2 can only be both even, both odd, or one square is
even and the other is odd. Notice that squares can only be 0 (mod 4) or 1 (mod 8): When
x2 is even, x is too, meaning x2 = (2n)2 = 4n2, a multiple of 4. When x2 is odd, though,
x is odd too, so x2 = (2n + 1)2 = 4n2 + 4n + 1. As n2 + n can only be even (the sum is
either even plus even, or odd plus odd), x2 must be 1 more than a multiple of 8. Hence,
x2 + y2 is either 0 (mod 4)+ 0 (mod 4) ≡ 0 (mod 4), 0 (mod 4)+ 1 (mod 8) ≡ 1 (mod 4),
or 1 (mod 8) + 1 (mod 8) ≡ 2 (mod 8). However, not all numbers with those remainders
are necessarily the sum of two squares.

There are some other useful relations between sum of squares. One quite obvious result
is that n2p is a sum of squares if p is, as n2p = n2(x2 + y2) = (nx)2 + (ny)2. Similarly, 2p
is a sum of two squares as well, as 2p = 2x2 + 2y2 = (x + y)2 + (x − y)2. The converse of
the previous result is true too: If 2p is a sum of two squares, p is. Indeed, if 2p = x2 + y2,

p =
(
x+y
2

)2
+
(
x−y
2

)2
= x2+2xy+y2

4
+ x2−2xy+y2

4
= x2+y2

2
, as desired.

The last two relations between sums of squares means that we must only analyze odd
sums of squares, since all even sums of squares can be derived from them: All even sums
of squares can be divided by 2 continuously to get other sums of squares, eventually giving
us an odd sum of squares. And all odd sums of squares generate even sums of squares by
repeated doubling.

3 Initial Theorems

In the following theorems, p and q are not prime unless it is mentioned.

Theorem 1. Let p and q be sums of squares. Then, pq is a sum of squares too.

Proof. Let p = x2
p + y2p and q = x2

q + y2q . Then, we simply expand pq:

pq = (x2
p + y2p)(x

2
q + y2q ) = x2

px
2
q + x2

py
2
q + y2px

2
q + y2py

2
q .

If we add and subtract 2xpxqypyq on the right side, we can get a sum of squares:

pq = x2
px

2
q + x2

py
2
q + y2px

2
q + y2py

2
q + 2xpxqypyq − 2xpxqypyq

= (x2
px

2
q + 2xpxqypyq + y2py

2
q ) + (y2px

2
q − 2xpxqypyq + x2

py
2
q )

= (xpxq + ypyq)
2 + (ypxq + xpyq)

2.
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Example 1. We proved earlier that if p is the sum of two squares, n2p is too. This is a
specific case of Theorem 1, where we let q = 02 + n2. Similarly, letting q = 12 + 12, we find
that if p is a sum of two squares, 2p is too. The last result is a case of a future theorem that
acts like the reverse of Theorem 1.

The converse of Theorem 1 (that if pq is a sum of squares, p and q are too) would be
nice, but this is easily disproven by 18 (which, in fact, is the smallest counterexample): We
have 18 = 32 + 32, but the divisors 3 and 6 are not sums of squares. However, there is a
result that is almost the converse of Theorem 1:

Theorem 2. If p (a prime number) and pq are sums of squares, then q is too.

Proof. Let p = x2
p + y2p and pq = x2 + y2. Then q = x2+y2

x2
p+y2p

. Clearly, x2 + y2 is a multiple of

x2
p + y2p, and thus x2

px
2 + x2

py
2 is too. Obviously, x2x2

p + x2y2p is another multiple of x2
p + y2p,

so (x2
px

2 + x2
py

2) − (x2x2
p + x2y2p) is a multiple as well. Simplifying and using the difference

of squares factorization, we find that x2
py

2 − x2y2p = (xpy − xyp)(xpy + xyp) is divisible by
x2
p + y2p.
As p = x2

p + y2p is a prime, one of the two factors, xpy − xyp or xpy + xyp, is divisible by
x2
p+y2p. Thus, xpy±xyp = nx2

p+ny2p for some n. Now, we can let x = ∓nyp+a and y = nxp+b,
where a and bmay be negative if necessary, and where∓ denotes the opposite sign of±. Then
we must have xp(nxp+b)±yp(∓ny+a) = nx2

p+xpb+ny2p±ypa = nx2
p+ny2p, so xpb±ypa = 0.

Hence, xp

yp
= ±a

b
, and since xp and yp are relatively prime (otherwise, p = x2

p+y2p is not prime),

we have a = mxp and b = myp for some m. Therefore, x = ∓nyp ±mxp and y = nxp +myp,
and pq = x2 + y2 = n2y2p − 2mnxpyp +m2x2

p +m2x2
p +2mnxpyp +n2y2p = (n2 +m2)(x2

p + y2p).
Since p = x2 + y2, the remaining factor must be q. As q = n2 +m2, we conclude that q is
indeed a sum of two squares.

Example 2. Again, we can prove one of our initial results using Theorem 2. Suppose 2p is
a sum of two squares. As 2 = 12+12 is a prime number, we know that p must also be a sum
of two squares.

Corollary 1. It is limiting that we can only use a prime number for p, but fortunately, by
repeatedly applying Theorem 2, we can generalize the result. Suppose that n = qp1p2 · · · is
a sum of two squares, where p1, p2, · · · are primes and sums of two squares. By Theorem
2, qp2p3 · · · has to be a sum of two squares. Similarly, qp3p4 · · · is a sum of two squares.
Repeating this reasoning, we can conclude that q is also a sum of two squares.

The contrapositive of Theorem 2 and Corollary 1 is true, although this is obvious by the
rules of logic:

Theorem 3. If pq is a sum of two squares, but q is not, then at least one of the prime
factors of p is not a sum of two squares.

Remark 1. Euler proved the case where p is prime separately, although the proof can be
condensed into one single case by letting p = p1p2 · · · . If all prime factors pk are sums
of two squares, p is also, by Theorem 1. However, as pq and p are sums of two squares,
Theorem 2 implies that q is also a sum of two squares, which is a contradiction. Thus, one
of the pk cannot be a sum of two squares.
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Example 3. An extension of Theorem 3 is that if a composite number n is a sum of two
squares and has a factor that is not a sum of two squares, n must have at least two prime
factors that are not sums of two squares. Indeed, letting q be the factor that is not a sum of
two squares, we find that n

q
has at least one prime factor that is not a sum of two squares.

Then, q must have at least one prime factor that is not a sum of two squares, as otherwise,
the product q of the sums of two squares is a sum of two squares too.

Lemma 1. Let p2 + q2 be a sum of two relatively prime squares that is divisible by some
prime n. Then we can find r and s such that r2 + s2 ≤ n2

2
is divisible by n.

Before proceeding with the proof, notice that we can in fact write r2+ s2 < n2

2
instead of

r2 + s2 ≤ n2

2
whenever n is an odd prime, since then n2

2
is not an integer and r2 + s2 cannot

be equal to it.

Proof. Evidently, p and q cannot both be divisible by n. If p were, then q would have to be
too as p2 + q2 has to be a multiple of n, and vice-versa. So we can write p = an ± r and
q = bn± s, where r and s are positive. In fact, including the ± means that r and s can be
at most 1

2
n, since when they are negative, we consider the cases where the remainder mod

n is greater than 1
2
n.

So p2+ q2 = (a2n2+2an+ r2)+ (b2n2+2bn+ s2) = (a2n2+ b2n2+2an+2bn)+ r2+ s2 is
a multiple of n, meaning r2+ s2 is too. Also, since r, s ≤ 1

2
n, r2, s2 ≤ 1

4
n2 and r2+ s2 ≤ 1

2
n2.

Hence, we have found r and s such that r2 + s2 is divisible by n and is at most 1
2
n2.

This lemma seems very specific, and indeed it is. We will only be using this theorem to
prove the following, much more versatile statement:

Theorem 4. If a number is a sum of two relatively prime squares, it cannot be divided by a
number that is not a sum of two squares.

Proof. We can use a proof by contradiction. Suppose that p21 + q21, where gcd(p1, q1) = 1,
can actually be divided by a prime n1 that is not a sum of two squares. We must not look
at composite n1, as if we prove that all prime factors are sum of two squares, the composite
factors must be too by Theorem 1.

By Lemma 1, we can find different p2 and q2 such that p22 + q22 is divisible by n1, and

p22 + q22 <
n2
1

2
. Let p22 + q22 = n1n2, which gives us n2 < n1

2
. Now we can use a technique

known as ”infinite descent:” As p22 + q22 is a divisible by n2, there exist p3 and q3 such that

p23 + q23 is divisible by n2 and is less than
n2
2

2
. If p23 + q23 = n2n3, n3 <

n2

2
< n1

4
. We can repeat

this reasoning infinitely, creating infinitely many nk that are less than n1

2
that divide sums

of two squares but are themselves not sums of two squares. Obviously, this is impossible,
as n1 is finite. Thus, through this contradiction, we conclude that a sum of two relatively
prime squares cannot be divided by numbers that are not sums of two squares too.

4 Major Results

Finally, after these initial theorems and investigations of sums of two squares, we can prove
the desired statement: When a number can only be written as a unique sums of two squares,
it is prime; otherwise, it is composite.
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Notice that we only consider numbers with a remainder of 1 (mod 4) here, as these are
the only primes (except 2 = 12 +12) that can be written as a sum of two squares in the first
place. Also, 1 = 02 + 12 is neither a prime nor a composite, so it is an exception that we
ignore.

Theorem 5 (Fermat’s Theorem on the Sum of Two Squares). All primes that have remain-
der 1 (mod 4) can be written as a sum of two squares.

Proof. Let the prime p equal 4n + 1 for some n. From Fermat’s Little Theorem, a4n ≡ 1
(mod p) and b4n ≡ 1 (mod p) whenever a, b are relatively prime to p (in other words, are
not multiples of the prime p). So a4n − b4n is a multiple of p. Factoring, we find that
(a2n − b2n)(a2n + b2n) is divisible by p. Since 2b2n is not divisible by p, only one of the two
factors is a multiple of p. Euler assumed that a2n − b2n is not divisible by p, but was at
first unable to prove that a and b exist that allows this to be the case. Regardless, with
this assumption, we can find that a2n + b2n must be divisible by p. Let c = an and d = bn,
which gives us a sum of two squares, c2 + d2, that is divisible by p. Neither square is
divisible by p, as the original a and b are not. So m = gcd(c, d) cannot be divisible by p. As
c2 + d2 = m2(e2 + f 2), where c = me and d = mf , we know that e2 + f 2 is divisible by p
and gcd(e, f) = 1. Using Theorem 4, we conclude that e2 + f 2 cannot be divisible by any
number that is not a sum of two squares. So e2 + f 2 couldn’t be divisible by p if p is not a
sum of two squares, so, by proof by contradiction, p must always be a sum of two squares.

We still need to prove that a and b can be found such that a2n − b2n is not divisible by
p. Euler published the following proof for this in Proof of a theorem of Fermat that every
prime number of the form 4n+ 1 is a sum of two squares (E241):

We use a proof by contradiction: Suppose no such a and b exist. Then, we can select
a = 2 and b = 1, a = 3 and b = 2, and so on until a = 4n and b = 4n − 1. All a2n − b2n,
their differences, the differences of the differences, etc. are multiples of p.

Notice that this sequence consists of the differences of consecutive terms of the sequence
12n, 22n, 32n, · · · . We will prove that if we subtract consecutive terms k times (using the
resulting sequence for the next difference) of the sequence 1k, 2k, 3k, · · · , we get the constant
term k!.

The first difference sequence is (x+1)k − xk, the second is (x+2)k − 2(x+1)k + xk, the
third is (x + 3)k − 3(x + 2)k + 3(x + 1)k − xk, and so on. Ultimately, the k-th difference is
(x+k)k−

(
k
1

)
(x+k−1)k+

(
k
2

)
(x+k−2)k+ · · · . In particular, the first difference has degree

k− 1, the second k− 2, and the k-th has degree 0 - i.e. the k-th differences are constant and
do not depend on x.

We have m = (k+1)k −
(
k
1

)
(k)k +

(
k
2

)
(k− 1)k + · · · as the k-th difference of the sequence

1k, 2k, 3k, · · · , where x = 1, and n = (k + 1)k+1 −
(
k+1
1

)
(k)k+1 +

(
k+1
2

)
(k− 1)k+1 + · · · for the

(k+1)-th difference of the sequence 1k+1, 2k+1, 3k+1, · · · where x = 0. Note that because the
k-th and (k+1)-th differences of either sequence are constant, we can use any x we desire, in
this case x = 0 and x = 1. Comparing the terms

(
k
ℓ

)
(k+1− ℓ)k in m and

(
k+1
ℓ

)
(k+1− ℓ)k+1
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in n, we find that the terms for n are (k + 1) times as great as the terms of m:(
k + 1

ℓ

)
(k + 1− ℓ)k+1 =

(k + 1) · k · · · · · (ℓ+ 1)

(k + 1− ℓ)!
(k + 1− ℓ)k+1

= (k + 1)
k · (k − 1) · · · · · (ℓ+ 1)

(k − ℓ)!
(k + 1− ℓ)k

= (k + 1)

(
k

ℓ

)
(k + 1− ℓ)k.

So n = (k + 1)m. In other words, the first term in the (k + 1)-th difference sequences of
1k+1, 2k+1, 3k+1, · · · are always k + 1 times the first term in the k-th difference sequences of
1k, 2k, 3k, · · · . The first term in the 1st difference sequence of 1, 2, 3, · · · is 1, so the first term
in the 2nd difference sequence is 2, in the 3rd difference sequence is 6, etc. Ultimately, the
first term in the k-th difference sequence of 1k, 2k, 3k, · · · is k!.

Therefore, the first term in the (2n)-th difference sequence of the sequence 12n, 22n, 32n, · · ·
is (2n)!. The first term of the (2n − 1)-th difference sequence of our original sequence
22n − 12n, 32n − 22n, · · · , which is also equal to (2n)!, must clearly be divisible by p = 4n+1,
but (2n)! is not divisible by 4n+1 as the prime is not included in the factorial product. Due
to this contradiction, we conclude that there must exist some a and b such that a2n − b2n is
not divisible by p.

However, this theorem is not very useful on its own, as we already need to know the
prime that the theorem is applied on. Therefore, we would like to find a simple method to
check whether a number is prime. The long-winded proof above is still worthwhile, since
Theorem 5, in conjunction with Theorems 6 and 7 that we will prove now, allows us to find
all primes of the form 1 (mod 4).

Theorem 6. If a number with remainder 1 (mod 4) is a unique sum of two squares that are
relatively prime to each other, it is a prime.

Proof. Instead of proving this theorem directly, we instead prove the equivalent contraposi-
tive: If the number n has a remainder 1 (mod 4) and is a composite, it can only be written
as two different sums of two relatively prime squares or it cannot be written as a sum of
such squares at all. By Theorem 5, we know that n cannot be divided by numbers that are
not sums of two squares. So n = (p2 + q2)(r2 + s2), where all p, q, r, s are nonzero.

However, we must show that we can actually find nonzero p, q, r, s that can factor n like
this. If p is 0 and q is 1 for every factorization, n cannot be factored into sums of two squares
that are not 1 or n, even though these should be the only types of factors by Theorem 5.
Thus, n is prime, which is a contradiction. If p = 0 but q ̸= 1, then n can only be written
as a sum of two squares that are not relatively prime. This still satisfies the contrapositive.
The same reasoning works for r and s.

Assuming now that p, q, r, s are non-zero, we have two possible squares from our work in
Theorem 1:

n = (pr + qs)2 + (qr − ps)2

n = (pr − qs)2 + (qr + ps)2.
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As pr − qs, pr + qs and qr + ps, qr − ps cannot be equal to each other (as p, q, r, s are
nonzero), the only way for the two sums to be the same is when pr + qs = ±(qr + ps) and
qr − ps = ±(pr − qs), which both simplify to pr + qs − qr − ps = (p − q)(r − s) = 0 or
pr + qs + qr + ps = (p + q)(r + s) = 0. So p = ±q or r = ±s, but then n is divisible by
p2 + q2 = 2p2 or r2 + s2 = 2r2. n is one more than a multiple of 4, i.e. odd, so it cannot
be divisible by these even numbers. Thus, our two sums of two squares are always different
when n is composite and our proof is complete.

However, we still cannot find with absolute certainty all primes 1 (mod 4) using Theorem
6. For instance, there might be a prime that is the sum of two squares in two different
ways. Fortunately, we can prove that this is impossible with the following theorem, which
coincidentally gives us a condition for composite numbers too:

Theorem 7. If a number can be written as two different sums of two squares, then it is a
composite number.

Proof. Assume that n = a2 + b2 = c2 + d2. We can assume that the two squares in a sum
cannot be equal to each other, as otherwise n is divisible by 2. Without loss of generality,
we let a > b and c > d. In addition, a ̸= c and b ̸= d as we need two different sums.

If a > c, then b < d such that a2 + b2 = c2 + d2. So let a = c + x and d = b + y, where
x, y ̸= 0. Then n equals both (c+x)+b2 = c2+b2+2cx+x2 and c2+(b+y)2 = c2+b2+2by+y2,
so 2cx + x2 = 2by + y2. Let 2cx + x2 = 2cy + y2 = xyz, since the expressions are multiples
of x and y. Then c = xyz−x2

2x
= yz−x

2
and b = xz−y

2
, and therefore a = yz−x

2
+ x = yz+x

2
and

d = xz−y
2

+ y = xz+y
2

. Therefore:

n = a2 + b2 = (
yz + x

2
)2 + (

xz − y

2
)2

=
y2z2 + 2xyz + x2

4
+

x2z2 − 2xyz + y2

4

=
(x2 + y2)z2 + x2 + y2

4
=

(x2 + y2)(z2 + 1)

4
.

As squares can only be 0 or 1 (mod 4), z2 + 1 cannot be a multiple of 4. Thus, x2 + y2

must be a multiple of 4. As x, y ̸= 0, x2 + y2 cannot be equal to 4, so when we simplify the
fraction for n, we will have z2 + 1 times the remaining factor of x2 + y2, which is not 1. In
other words, n has two factors and is composite.

However, knowing that a number is composite is not very useful on its own. We would
much prefer to know at least one divisor of the composite number, so that we may begin
finding its prime factorization. Fortunately, with the help of Theorem 4, we are able to do
so.

Assume that n = a2 + b2 = c2 + d2. We know that n is composite. If a and b (or c and
d) are not relatively prime, we can write x = a

m
and y = b

m
, where m = gcd(a, b). So n

m2 is
a sum of relatively prime squares, meaning we can apply Theorem 4. Thus, n

m2 cannot be
divided by any number that is not a sum of two squares. We can write n

m2 = (t2+u2)(r2+s2),
or n = ((mt)2+(mu)2)(r2+ s2) = (p2+ q2)(r2+ s2). r and s are made to be relatively prime
here.
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Due to Theorem 1, we know that a = pr + qs, b = ps− qr, c = ps+ qr, and d = pr − qs
work as values. In particular, a and b (and c and d) are both divisible by m, as we assumed
before. Thus, we can actually solve for r and s: c − b = ps + qr − (ps − qr) = 2qr and
a − d = pr + qs − (pr − qs) = 2qs, meaning c−b

a−d
= r

s
. Since r and s were assumed to be

relatively prime, we should simplify c−b
a−d

as much as we can before computing r and s. After
finding r and s, we now know that r2 + s2 is a factor of n.

Note that if r2+ s2 happens to be even, but n is not, we halve r2+ s2 to get a true factor
of n. This is because 4n would give us (2a)2 + (2b)2 = (2c)2 + (2d)2 = 4n, meaning that
r2 + s2 (where r

s
is still 2c−2b

2a−2d
= c−b

a−d
) is a factor of 4n. So r2+s2

2
has to be a factor of n. Also,

r2 + s2 cannot be a multiple of 4 as the only way to have the remainder 0 (mod 4) is when
r and s are both even, which is never the case as r and s are defined to be relatively prime.

In addition, we could switch the a and b, and the c and d in order to get some other
factors. This technique to find factors is known, unsurprisingly, as Euler’s factorization
method.

Finally, if the number has remainder 1 (mod 4), but cannot be written as a sum of two
squares, it must be composite, or else the number would contradict Theorem 5. Unfortu-
nately, no factors can be found without relying on the typical trial and error.

5 Some Final Experimentation!

This method is quite useful, as we can not only determine whether a number is prime or not,
but also compute at least one factor. However, it can be tedious to check all squares up to√

n
2
(if a, b >

√
n
2
, then a2 + b2 > n

2
+ n

2
= n). Fortunately, we know that squares can only

end in the units digits of 0, 1, 4, 5, 6, and 9. So if we subtract a square from the number we
are analyzing and we get a number that ends in 2, 3, 7, or 8, we know that we cannot get a
sum of squares with that subtracted square. In fact, if we know the units digit of the number
we are testing, we can narrow down the possible units digits of our subtracted square even
more.

If the number has an even units digit, it is even and therefore a composite (with the
obvious exception of 2). A units digit of 5 also means that our number is divisible by 5. If
the number ends in 1, the square can only end in 0, 1, 5, or 6. If the number has a units digit
of 3, the square must end in 4 or 9. If 7 is the units digit of our number, the square ends in
1 or 6. Finally, with a units digit of 9, the square can only end in 0, 4, 5, or 9.

Euler wasn’t satisfied with this, however, as squaring numbers in the first place can be
difficult. Thus, he devised a method that only requires addition and subtraction of terms
after squaring an initial number. To speed up the square computations, we can begin with the
largest possible numbers n with the correct units digits to be squared. Then, (n− 10k)2 has
the same units digit, for any positive integers k such that n−10k > 0. To go from (n−10k)2

to (n− 10k− 10)2, we add (n− 10k− 10)2 − (n− 10k)2 = (−10)(n− 10k− 10+ n− 10k) =
−20n + 200k + 100, meaning we can subtract 20n − 200k − 100 from the previous square
subtraction to get the next. This is much easier than computing the next squares, and the
resulting differences, manually.

Euler ends his paper by applying his method to a variety of large primes and composites,
which, even to this day, is a quite impressive accomplishment. For instance, Euler showed
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that 82421, 100981, and 262657 are prime, while 1000009 = 292 · 3413 and 32129 = 192 · 89
are composite. He also proved that 233033 is composite, although he was only able to find
the factorization 467 · 499 by testing because 233033 is not a sum of two squares.

However, for the sake of length, we will be using a much smaller number as an example:
We will deduce whether 1853 (which is 1 (mod 4), since Euler’s method is only useful for
such numbers) is a prime or not. No primes less than 10 are divisors, as we can see with
our typical divisibility rules. While we could test all primes up to about 45, let’s use Euler’s

method to speed up the process. We must only check the numbers up to
√

1853
2
, or about

30. Squares with unit digits of 1, 5, 6, or 0 do not work, as otherwise we are left with
a number with units digits of 2, 3, 7, or 8, which is not a square. Thus, we only check
the squares 4, 9, 49, 64, 144, 169, 289, 324, 484, 529, 729, and 784. Subtracting, we get the
possible squares 1849, 1844, 1804, 1789, 1709, 1684, 1564, 1529, 1369, 1324, 1124, and 1069. By
comparing these numbers with known squares (302 = 900 and 402 = 1600), we find that
1849 = 432 and 1369 = 372, so we have the sums 22 + 432 and 222 + 372 for 1853. Hence,
1853 is composite.

We can also find a factor r2 + s2 of 1853 using our formula r
s
= c−b

a−d
. Plugging in a = 2,

b = 43, c = 22, and d = 37, we get c−b
a−d

= −21
−35

= 3
5
, meaning 32+52

2
= 17 is a factor. Knowing

this, we find that 1853 = 17 · 19. Admittedly, we could have found these factors rapidly
through trial and error with primes in this simple example, but for much larger primes and
composites, this method is very useful.

While Euler’s primality test is especially useful for manual computations, it can also be
implemented into programs that check for primes in order to make them run faster and more
efficiently. For instance, the following Python code can deduce that 3543553 is a composite
number with a factor of 22 + 32 = 13, and indeed 3543553 = 13 · 272581. Running the
program again for 272581, we find that it is prime. So 13 · 272581 is the prime factorization
for 3543553.

Even though this code is not optimized with the units digits test we found earlier, it is
able to state whether 3543553 and 272581 are prime in just two seconds! Note that this
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program only works for numbers equivalent to 1 (mod 4), since our original conditions only
work, or at least are only useful, for this remainder.

6 Conclusion

Ultimately, one of the most fundamental issues in number theory is finding primes, and
Euler’s discovery allows us to find them. In addition, the factors of composites can be found
in about two thirds ( 1√

2
≈ 0.707) the time we would otherwise need. While more efficient

primality tests have been found since, such as the elliptic curve or Miller-Rabin primality
tests, although they are far beyond the scope of this paper, this method is a nice introduction
to the deep, interesting search for primes, not only on paper, but also on screens.
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