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1 Fermat Numbers

In order to decipher the primality of a Fermat number, we must define the form
in which a number must fit in order to be classified as such.

Definition 1.1 (Fermat Numbers). Fermat numbers are positive integers of
the form Fn = 22

n

+ 1.

Fermat had claimed that all numbers of this form were prime as 22
0

=
2 + 1 = 3, 22

1

= 4 + 1 = 5, 22
2

= 16 + 1 = 17, 22
3

= 256 + 1 = 257,
22

4

= 65536 + 1 = 65537, the first five Fermat numbers, are prime. Perhaps it
was the glaring incompleteness behind Fermat’s conclusion in proving that this
pattern would hold for all n ∈ Z≥0, the set of all nonnegative integers, that led
Euler to attempt to determine the primality of F5.

2 Numbers of the Form an + 1

Numbers of the form an + 1, where n ∈ Z≥0 and a is any number, always has
divisors the following condition:

a2m+1 + 1 can be divided by a + 1 and ap(2m+1) + 1 by ap + 1 for any number
substituted in place of a.

Proof. a2m+1 + 1 can be written in the form

(a+ 1)(a2m − a2m−1 − a2m−2 − ...− a+ 1)∀m ∈ Z≥0,

meaning that (a+1)|(a2m+1). Similarly, ap(2m+1)+1 can be written in the form

(ap + 1)(ap(2m) − ap(2m−1)) − ap(2m−2) − ...− ap + 1)∀m ∈ Z≥0,

meaning that (ap + 1)|(ap(2m+1)).
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As a result of the proof of (1), which accounts for all values of n such that
n = 2m + 1 or n = p(2m + 1), that is, n is a number with any odd factors, or
not a power of two, we can turn our attention to numbers in the form a2

n

+ 1,
a case that closely resembles the Fermat number Fn When looking at a number
of the form a2

m

+1, we can see that it would be included in the set of numbers
for which the previous condition would apply. However, it cannot be concluded
that the primality a2

m

+ 1 can be generalized over all numerical values of a
simply due to numbers of the form an + 1 holding the listed properties over all
such values.

Clearly, if a is an odd integer, then the resulting number a2
m

+ 1 would have
an even parity(and would be composite as a result) regardless of the numerical
value of m on account of a2

m

being an odd integer.

Even if a is even, there exists an infinite number of examples of cases in which
a2

m

+ 1 is indeed composite.

For example, when m = 1, that is, when the number is in the form a2 + 1,
it is composite for any value of a that can be represented in the form 5b ± 3,
where b ∈ Z>0, as any number generated under such conditions, such as 50, 65,
145, 170, are all multiples of 5. Other cases under which a2 + 1 include when
a = 30 and a = 50, when the numbers produced are divisible by 17 and 41,
respectively.

Composite values for cases in which n ̸= 1 also exist, including 104 + 1,
68 + 1, and 6128 + 1, which are divisible by 73, 17 and 257, respectively.

Although composite numbers of the form a2
m

+1 can be found, Fermat could
not find any composite numbers of the form 22

m

+1, since, at the time, the table
of primes extended to 100000. Therefore, as the first five Fermat numbers were
primes, and perhaps with the examples of composite cases of an + 1, where a
is even, being as scarce as they are, Fermat came to the premature conclusion
that all numbers of such a form would be prime. However, as Euler showed,
this is not the case.

3 Primality of F5

When examining the case of the Fermat number, Euler picked up where Fer-
mat left off, starting with examining the primality of the Fermat number where
n = 5.

F5 = 22
5

+ 1 = 232 + 1 = 4294967297

Euler observed that this number is divisible by 641, thus proving that the
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method which Fermat used to compute a prime greater than any given number
was false.

4 Numbers of the Form an − 1

Numbers of the form 2n − 1, and more generally, numbers of the form an − 1,
is composite whenever n is not prime.

Proof. Let us assume that numbers of the form an−1, where a ∈ Z>0 , a and n
are greater than 1, are prime. Such numbers can be expressed in the following
form:

an − 1 = (a− 1)(an−1 + an−2 + ...+ a+ 1)

From this, we can see that (a− 1)|(an − 1).

However, since an − 1 is prime, and a − 1 = 1 or a − 1 = an − 1 as a re-
sult(with the latter being impossible as n > 1, then a = 2. Therefore, we can
establish that if an − 1 were to be prime, then the value of a must be 2.

We can set n = bc, where b, c ∈ Z>0, b and c are greater than 1, and they
are both less than n. Then

abc − 1 = (ab − 1)(ab(c−1) + ab(c−2) + ...+ ab + 1)

Therefore, we can say that (ab−1)|(abc−1), meaning that a number of the form
abc−1 = an−1, which we have narrowed down to 2n−1, must be composite.

While we have proved that if n is not prime, that 2n−1 should be composite,
we have not done so with the converse, in that 2n− 1 must be prime in the case
that n is prime.

This notion can be refuted simply with the counterexample given by Euler,
in that 211 − 1 = 2047 has divisors 23 and 89, therefore putting to rest the
possibility that 2n − 1 is always prime, and again not allowing for there to be
such a simple method to compute a prime greater than any given number, as
Fermat proposed. Euler sought to find a rule for the exceptions of the cases in
which 2n − 1, where n is prime, is a prime number, that is, the cases in which
a number of the form is not so.

For example, when looking at the cases in which n can be written in the forms
n = 4m − 1 and n = 8m − 1, where m ∈ Z>0, for which the resulting number
an−1 is always divisible by 8m−1. This results in the exclusion of the following
possible values of n: 11, 23, 83, 131, 179, 191, 239, and so on for all prime values
of n that can be written in the forms 4m− 1 and 8m− 1.

Despite these restrictions, there continue to be numerous cases in which an−1 is
composite, including 237−1, which is divisible by 223, 243−1, which is divisible
by 431, and so on.

3



5 Divisibility of an − bn

Euler asserted that numbers of the form an− bn, where a, b, n ∈ Z>0 and n > 1,
are divisible by n + 1 if n + 1 is any prime number that neither divides a nor
b. He did not provide proof for this, citing the primality of n+1 as a reason as
to why this could serve to be difficult. Nevertheless, we can analyze the results
of this proposition if it were to, indeed, be true. Some of its results are the
following:

(n+ 1)|(2n − 1)

if n+1 is prime, and
(2m+ 1|(22m − 1)

if 2m+1 is a prime number. This can be directly followed by the previous result
as all prime numbers(other than two, which is not allowed by the proposition),
are odd.

From the previous statement, we can conclude that either 2n + 1 or 2n − 1
can be divided by 2n+ 1, since 22n − 1 = (2n + 1)(2n − 1).

Euler states a multitude of other theorems as a result of his finding that (n +
1)|(an−bn) if n+1 is prime, but we will narrow our discussion to on in particular
and its similarity to another well-known theorem.

6 Fermat’s Little Theorem

Euler states the following as a result of his discussion of the divisibility of an−bn:

If n is a prime number, all powers having the exponent n−1 leave either nothing
or 1 when divided by n.

This closely resembles Fermat’s little theorem, which states the following:

Theorem 1 (Fermat’s Little Theorem). If n is prime, an ≡ a(mod n) ∀a ∈ Z.

The following lemma will be used in the proof of this theorem.

Lemma 1. For all x, y ∈ Z and prime n, (x+ y)n ≡ xn + yn(mod n).

Proof. This lemma is also known as the freshman’s dream. Starting the proof
with considering the binomial expansion of (x + y)n, paying close attention to
the behavior of the coefficients.

(x+ y)n =

∞∑
k=0

(
n

k

)
xkyn−k

The binomial coefficients can be written in the following form(
n

k

)
=

n!

k!(n− k)!
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Examining this, considering that 0 < k < n, we can see that the denominator of
the right-hand side expression has no prime factors of n, as n is prime. Therefore,
we can say that (

n

k

)
≡ 0 (mod n)

The condition that 0 < k < n applies all terms with the exception of the
resulting polynomial’s initial and final terms, these being xn and yn. We can
now say that

(x+ y)n ≡ xn + yn (mod n)

Proof of Theorem 1. We can prove Fermat’s Little Theorem for all a ∈ Z≥0

using mathematical induction. We can first test the base case, which is

0n ≡ n (mod n)

We can now assume that the statement holds for some a ∈ Z≥0, or that an ≡
n (mod n), and resume with our inductive step using the freshman’s dream
lemma. From this, we get

(a+ 1)n ≡ an + 1 (mod n)

This is Fermat’s Little Theorem for a+ 1, so the theorem has been proved.

7 Infinitely Many Primes

Fermat, after coming to the conclusion that 22
n

is prime for any integer, believed
that this gave a way to compute the value of a prime number greater than any
given number in a relatively simple manner. While there is still no formula from
which we can reliably construct primes greater than any given number, we can
prove that there ought to be so in the first place using the following theorem,
which is provided by Euclid.

Theorem 2 (Euclid’s Theorem). There are infinitely many prime numbers.

Proof. Assume that there exists a last prime number pn be the nth prime num-
ber, if all prime numbers were to be arranged in ascending order. Now let

P = p1p2p3 · · · pn + 1

Since P > 1 and by our original assumption, P must be composite, it should be
divisible by some prime p, that is, one number in the sequence p1p2p3...pn. Since
p|(p1p2p3...pn) and p|P , we can conclude that p|(P − (p1p2p3...pn)). Therefore,
p|1. From this, we can see that the only possible value of p is 1 in this case.
However, p > 1, and we can conclude that for our original assumption was false,
and that for any finite set of prime numbers, there exists a prime not in this
set, that is, that there are infinitely many prime numbers. Thus, for any given

5



number, there exists a prime greater than the given number. While there still
exists no simply way to compute such numbers, there are limits that can be set
on the value of a hypothetical nth prime number, such as 22

n−1

, or Fermat’s nth
number, which is the greatest possible value of the nth prime number.
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