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Euler’s formula.

As is well known,
eiθ = cos θ + i sin θ.

One proof of this is carried out with the use of the Taylor expansions of cosine and sine. The Taylor
expansion of sine is given by

∞∑
n=0

(−1)n

(2n+ 1)!
x2n+1.

Writing this out for later clarity,

sinx = x− x3

3!
+

x5

5!
− x7

7!
+ · · · .

Similarly, the Taylor expansion of cosine is given by

∞∑
n=0

(−1)n

(2n)!
x2n

which is

cosx = 1− x2

2!
+

x4

4!
− x6

6!
+ · · · .

Theorem 1.
eiθ = cos θ + i sin θ.

Proof one. Consider the Taylor expansion of ez which is

∞∑
n=0

zn

n!

= 1 + z +
z2

2!
+

z3

3!
+ · · · .

Then, let z = iθ. This series becomes
∞∑

n=0

(iθ)n

n!

= 1 + (iθ) +
(iθ)2

2!
+

(iθ)3

3!
+ · · ·
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= 1 + iθ − θ2

2!
− iθ3

3!
+ · · · .

Looking briefly at the expansions of sinx and cosx,

= 1 + iθ − θ2

2!
− iθ3

3!
+ · · ·

=

(
1− θ2

2!
+

θ4

4!
· · ·

)
+

(
iθ − iθ3

3!
+

iθ5

5!
· · ·

)
=

(
1− θ2

2!
+

θ4

4!
+ · · ·

)
+ i

(
θ − θ3

3!
+

θ5

5!
+ · · ·

)
= cos θ + i sin θ.

■

A secondary proof relies on the following theorem.

Proof two. Consider the following

ex = lim
n→∞

(
1 +

x

n

)n

.

Much like before, let x = iθ so

eiθ = lim
n→∞

(
1 +

iθ

n

)n

.

Then, note that

1 +
ix

n
=

√
1 +

x2

n2

(
cos

(
tan−1

(x
n

))
+ i sin

(
tan−1

(x
n

)))
.

From this,

(1 +
ix

n
)n = (

√
1 +

x2

n2
)n

(
cos

(
n tan−1

(x
n

))
+ i sin

(
n tan−1

(x
n

)))
.

Since

lim
n→∞

(
1 +

x2

n2

)n
2

= 1

and
lim

n→∞
n tan−1

(x
n

)
= x,

lim
n→∞

(
1 +

ix

n

)n

= cosx+ i sinx.

■
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Theorem 2.
eiπ + 1 = 0.

Proof. This is just plugging in π. It is

eiπ = cosπ + i sinπ

= −1 + 0.

■

Considering the formula, note that

cosx =
eix + e−ix

2
.

This can be expanded to show it is true

cosx =
eix + e−ix

2

=
cosx+ i sinx+ cosx− i sinx

2

=
2 cosx

2
.

Similarly,

sinx =
eix − e−ix

2i
.

This can be shown to be true in the same way.

Angle sum and difference identities.

This can be used to show the angle sum and difference identities.

Theorem 3.
cos(α± β) = cosα cosβ ∓ sinα sinβ.

Proof. Noting that cosx = eix+e−ix

2 ,

cos(α+ β) =
ei(α+β) + e−i(α+β)

2

=
eiα+iβ + e−iα−iβ

2

=
eiαeiβ + e−iαe−iβ

2

=
(cosα+ i sinα)(cosβ + i sinβ) + (cosα− i sinα)(cosβ − i sinβ)

2

=
2(cosα cosβ − sinα sinβ)

2
= cosα cosβ − sinα sinβ.

Similarly for cos(α− β). ■
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This can also be used to prove the sinx analogue.
Note also that

cosx =
eix+ e−ix

2
means

d

dx

1

2
(eix+ e−ix)

=
ieix − ie−ix

2

=
i cosx+ i2 sinx− i cosx+ i2 sinx

2

=
−2 sinx

2

= − sinx

as expected.

Expansion of powers of cosine.

Let u = cos θ + i sin θ and v = cos θ − i sin θ. Then

un = cosnθ + i sinx and vn = cosnx− i sinnx.

Consider the following problem, proposed in [E246]. Firstly, 2n cosn x = (u + v)n. This can be
expanded

2n cosn x = u+ nun−1v +
n(n− 1)

2
un−2v2 + · · · .

Similarly,

2n+1 cosn x = un + vn +

(
n

n− 1

)
(un−2 + vn−2)uv +

(
n

n− 2

)
(un−4 + vn−4)un−2v2 + · · · .

Noting that un + vn = 2 cosnx, this is the same as

2n cosn x = cosnx+ n cos(n− 2)x+
(n)(n− 1)

2!
+ · · · .

Considering

sinm θ cosn θ =
(u− v)m

2mim
(uv)

n

2n

since the power m is of the form 4a+ 1,

im = i4a+1 = i.

Therefore,
2m+ni sinm x cosn x = (u+ v)m(u+ v)n

= −(v − u)m(v + u)n.

Then,
2m+n sinm x cosm x = −singx−A sin(g − 2)x−B sin(g − 4)x− · · ·
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with
A = f

2B = fA− g

3C = fB − (g − 1)A

4D = fC − (g − 2)B

and so on. Consider sin x
cos x , which has m = 1 and n = −1 as well as f = −2 and g = 0. Then,

A = −2

2B = −2(−2)− 0 = 4

B = 2

3C = (−2)(2)− (−1)(−2) = −6

C = −2

4D = (−2)(−2)− (−2)(2)

D = 2

and so on. Since m = 1,

sinx

cosx
= 2 sin 2x− 2 sin 4x+ 2 sin 6x− 2 sin 8x+ · · · .
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