
SPECIAL CASES OF FERMAT’S LAST THEOREM

EZRA FURTADO-TIWARI

Abstract.
We summarize various important results from Euler’s paper

“E098: Theorematum quorundam arithmeticorum demonstrationes”
(Proofs of certain arithmetic theorems). [Eul47]

1. Sums of Squares

We start by introducing some interesting results about sums of squares. First, Euler
converted Pythagorean triples into a simpler form.

Lemma 1.1. If a2 + b2 = c2 for positive integers a, b, c (such that gcd(a, b) = 1) then
a = p2 − q2 and b = 2pq or b = p2 − q2 and a = 2pq, where p and q are relatively prime and
p ̸≡ q (mod 2).

Proof. Let
√
a2 + b2 be represented by a+ b q

p
, where q and p are relatively prime. Then

a2 + b2 = a2 +
2abq

p
+

(bq)2

p2
.

Simplifying, we find

b2 =
2abq

p
+

(bq)2

p2

and thus
a

b
=

p2 − q2

2pq
.

It follows from this equation that

a = p2 − q2

and

b = 2pq,

as a and b are assumed to be relatively prime. Additionally, p and q must be of different
parities in order to ensure that the numerator and denominator are relatively prime. ■

Corollary 1.2. If a and b are coprime odd integers, then a2 + b2 is not a square.

To prove the above corollary, we note that a2 = (p2 − q2)2, which is odd, and b2 = (2pq)2,
which is even.

Corollary 1.3. If a and b are coprime integers and a2 + b2 is a square, then either a ≡ 0
(mod 3) or b ≡ 0 (mod 3).
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Proof. Assume that at least one of p and q is congruent to 0 mod 3. Then clearly b = 2pq ≡ 0
(mod 3). This leaves us to check the case in which p, q ̸≡ 0 (mod 3). Then p2 ≡ 1 (mod 3)
and q2 ≡ 1 (mod 3), so a = p2 − q2 ≡ 0 (mod 3). ■

Lemma 1.4. If a2− b2 is a square, then a = p2+ q2 and either b = p2− q2 or b = 2pq where
p and q are coprime and p ̸≡ q (mod 2).

Proof. Let a2 − b2 = c2. Then a2 = b2 + c2 for coprime b and c, so b = p2 − q2 and c = 2pq
or c = p2 − q2 and b = 2pq (by Lemma 1.1). In both cases, we have a = p2 + q2. ■

Corollary 1.5. If a2 − b2 = c2, then either a, b, or c is divisible by 5.

Proof. We can let a = p2 + q2 and b = p2 − q2 or 2pq (so that c is the other expression).
Clearly if p or q is divisible by 5 then 2pq will be divisible by 5. Otherwise, p2 ≡ ±1 (mod 5)
and q2 ≡ ±1 (mod 5), so either p2 + q2 or p2 − q2 must be divisible by 5. ■

2. Sums of Fourth Powers

Euler chose to investigate similar forms with fourth powers, concluding that certain ex-
pressions cannot be squares. He started by proving Fermat’s Last Theorem in the n = 4
case.

Theorem 2.1. If a and b are positive integers, then a4 + b4 is not a square.

Proof. We will show that if a and b are positive integers satisfying the condition given, we
can construct smaller a and b that also satisfy this, showing that there is no smallest pair
(a, b) among positive integers such that a4 + b4 is a square. As a result, we can assume a
and b are relatively prime, so that a is odd and b is even. Thus we may write a2 = p2 − q2

and b2 = 2pq, where p and q are coprime positive integers of different parities. But notice
that because p2 − q2 = a2, p is in the form m2 + n2 for some coprime m and n of different
parities, so p is odd.

Additionally, 2pq is a square, and since p and q are relatively prime, 2q and p must both
be squares. We may also write q = 2mn for the same m,n defined previously.
We note that 2q = 4mn must be a square, so m and n must individually be squares as

well. Thus we may let m = x2 and n = y2, so that

p = m2 + n2 = x4 + y4.

Thus we have constructed a smaller pair of positive integers such that x4 + y4 is a square.
We may repeat this process infinitely to show that there are no positive integers satisfying
our condition.

■

Euler proved a stronger result than Fermat’s Last Theorem for n = 4, but we may reduce
this case of Fermat’s Last Theorem to a case of Theorem 2.1.

Corollary 2.2. There are no positive integer solutions to the equation a4 + b4 = c4.

Euler also considered some other expressions of similar degree, including multiple different
combinations of two variables.

Corollary 2.3. If a and b, and a2 + b2 are positive integers, then ab(a2 + b2) cannot be a
square.
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Proof. Note that if ab(a2 + b2) is a square, then a, b, a2 + b2 would need to individually be
squares, as they are pairwise coprime. Then a2 + b2 = m4 + n4 would need to be a square,
which is impossible. ■

Theorem 2.4. If a and b are distinct positive integers, then a4 − b4 cannot be a square.

We can split this proof into multiple cases, based on the parity of b.

Lemma 2.5. If a and b are distinct positive integers and b is even, then a4 − b4 cannot be
a square.

Proof. We can write a2 = p2 + q2 and b2 = 2pq, where p and q are coprime positive integers,
p is even, and q is odd. Because p2 + q2 = a2, we can write p and q as q = m2 − n2 and
p = 2mn. But 2p = 4mn is a square as 2pq is a square for relatively prime p, q, so m = x2

and n = y2 for some smaller relatively prime positive integers x, y. However, this would
imply that q = m2−n2 = x4−y4, so we would have found smaller solutions to our equation,
proving that there are none. ■

Lemma 2.6. If a and b are distinct positive integers and b is odd, then a4 − b4 cannot be a
square.

Proof. Because b is odd, we can write a2 = p2 + q2 and b2 = p2 − q2. As p2 + q2 is a square,
we know that q is even and p is odd. But then a2b2 = p4 − q4, which is a square, but q is
even, so this is impossible. Thus there are no distinct positive a, b such that b is odd and
a4 − b4 is a square. ■

Combining our lemmas above gives a proof of Theorem 2.4.

Theorem 2.7. If a and b are distinct positive integers, then 2a4 + 2b4 cannot be a square.

Proof. Assume that a and b are relatively prime (if not, we can simply divide a and b by
gcd(a, b)). If one of a or b were even then we would have 2a4 + 2b4 ≡ 2 (mod 4), which is
impossible. Thus both a and b must be odd.
Then a2 + b2 and a2 − b2 must both be even. Thus we can rewrite our expression as(

a2 + b2

2

)
+

(
a2 − b2

2

)
where a2+b2

2
and a2−b2

2
are relatively prime positive integers, such that the first is odd and

the second form is even. Then we can write a2+b2

2
= p2 − q2 and a2−b2

2
= 2pq for p and q.

Thus
a2 = p2 + 2pq − q2

and
b2 = p2 − 2pq − q2,

so
a2 − b2 = (a+ b)(a− b) = 4pq.

Then a+ b = 2mp
n

and a− b = 2nq
m
, so that a = mp

n
+ nq

m
and b = mp

n
− nq

m
. From here we find

m2

n2
p2 +

n2

m2
q2 = p2 − q2

so that
p2

q2
=

n2(m2 + n2)

m2(n2 −m2)
=

n2(n4 −m4)

m2(n2 −m2)2
.
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However, this means that n4 − m4 is a square, which is impossible. Thus p and q cannot
exist and neither can a and b. ■

Theorem 2.8. If a and b are distinct positive integers, then 2a4 − 2b4 cannot be a square.

Proof. Assume a and b are relatively prime; clearly a and b must both be odd. Then

2(a+ b)(a− b)(a2 + b2) = 2a4 − 2b4 must be a square, and so must be
(
a+b
2

) (
a−b
2

) (
a2+b2

2

)
.

The terms in this product are pairwise coprime, so each term must be a square. Thus we
can let a−b

2
= p2 and a+b

2
= q2, so that a = p2 + q2 and b = q2 − p2. Then a2+b2

2
= p4 + q4,

but p4 + q4 cannot be a square, so 2a4 − 2b4 cannot be a square either. ■

3. Additional Arithmetic Theorems

After showing that various expressions cannot be squares, Euler turned his attention to
the n = 6 case of Fermat’s Last Theorem, as well as another theorem by Fermat about
triangular numbers.

Theorem 3.1 (Fermat). If n is a triangular number, meaning that n = k(k+1)
2

for some k,
then n cannot be a fourth power unless n = 1.

Proof. This is equivalent to showing that unless k = 1, k(k+1)
2

cannot be a fourth power.
We can consider cases where k is even and odd independently. If k is even, then we have
k(k+1)

2
= (k + 1)

(
k
2

)
, and if k is odd, we have k(k+1)

2
= k

(
k+1
2

)
. Both terms are relatively

prime in both cases; in the first, we can let k = 2m4 so that k+1 = 2m4+1 must be a fourth
power. In the second case, we can let k+1 = 2m4, so that 2m4 − 1 must be a fourth power.
Let n4 = 2m4 ± 1; multiplying this equation by 2 and rearranging gives us 4m4 = 2n4 ± 2.
However, 4m4 is a square, and we have shown that 2a4±2b4 cannot be a square, so there are
no solutions to this equation. Thus there are no triangular numbers that are fourth powers
(unless n = 1). ■

Theorem 3.2. If a
b
is a positive rational number, then a3

b3
+ 1 is not a square unless a

b
= 2.

Proof. We can reduce this to showing that a3b + b4 cannot be a square unless a = 2b. We
can factorize this as b(a + b)(a2 − ab + b2), which we can substitute c for a + b in to find
b(a + b)(a2 − ab + b2) = bc(c2 − 3bc + 3b2). We need to show that this cannot be a square
unless c = 3b. Additionally, we know that b and c are relatively prime.
We consider two cases; one where c is a multiple of 3, and one where c is not.
If c is not divisible by 3, then each of the factors b, c, and c2 − 3bc+ 3b2 are squares. Let

c2 − 3bc+ 3b2 =
(
m
n
b− c

)2
, so that

b

c
=

3n2 − 2mn

3n2 −m2

or
b

c
=

2mn− 3n2

m2 − 3n2
.

The numerator and denominator of these fractions are coprime unless m is a multiple of 3.
We first assume that m is not divisible by 3. Thus either c = 3n2 −m2 or c = m2 − 3n2, but

only the latter is possible as m2 ≡ 1 (mod 3). Then let
√
c = m − p

q
n, so that m

n
= 3q2+p2

2pq

and
b

n2
=

2m

n
− 3 =

3q2 − 3pq + p2

pq
.
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Then pq(3q2 − 3pq + p2) is also a square, so we have found a smaller solution.
Now, assume that m is divisible by 3, so that m = 3k. Then

b

c
=

n2 − 2kn

n2 − 3k2
,

so c = n2 − 3k2. Again, we let
√
c = n− p

q
k, so that k

n
= 2pq

3q2+p2
and thus

b

n2
= 1− 2k

n
=

p2 + 3q2 − 4pq

3q2 + p2
.

Then (p2 + 3q2)(p − q)(p − 3q) should be a square; setting p − q = t and p − 3q = u gives
(p2 + 3q2)(p− q)(p− 3q) = tu(3t2 − 3tu+ u2), which is another smaller solution.
Last, we need to check the case in which c is a multiple of 3. Letting c = 3d, we find that

bd(b2 − 3bd+ 3d2) will also be a square, so we are done.
■

We can use a very similar proof to show that a3

b3
− 1 is also not a square.

Corollary 3.3. If a and b are positive integers, then neither a6 + b6 nor a6 − b6 can be a
square.

Clearly we cannot have a6

b6
= 2, so this follows from Theorem 3.2.

Corollary 3.4. There are no positive integer solutions to the equation a6 + b6 = c6.

Again, we restate this result in terms of Fermat’s Last Theorem, as this is a stronger
version of the case in which n = 6.

4. Conclusion

Euler considered various different expressions to determine which could be squares and
which could not, which he used to prove special cases of Fermat’s Last Theorem. We looked
at some of the results, which generally used a proof style involving constructing the smallest
solution and proving that a smaller solution could be constructed from it.
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