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1. Abstract

This written paper is a synopsis and simplification of Leonhard Euler’s work in his paper
[Eul18a]. Building off of his previous paper [Eul18b], Euler uses the general fourth power
formula and applies simplifications and substitutions to continue to reduce the formula.
Using the quadratic formula, he then finds the roots that satisfy the formula, and then
forms a series of the candidate solutions. Using the series, he goes back to the original
formula and beautifully reduces the expression, and considers three separate examples with
potential solutions from there.

2. The Problem of Fourth Degree

Prior to Euler’s analysis of Diophantine Equations, there was no rigorous, straightforward
way of finding multiple solutions to fourth-power formulas that must equal a square. There
was too much work involved for humans and primitive machines to brute force solutions.
Euler, however, observed that any fourth-power formula equivalent to a square must be in
the form:

a2x4 + 2abx3y + cx2y2 + 2bdxy3 + d2y4

which can then be reduced to:

(ax2 + bxy + dy2)2 + x2y2(c− b2 − 2ad)

taking c− b2 − 2ad = mn, a substitution is made so:

(ax2 + bxy + dy2)2 + x2y2(mn)

is equivalent to a square, which will satisfy:

ax2 + bxy + dy2 = λ(mp2 − nq2)

with

xy = 2λpq

Now, (2λ(mp2+nq2))2 turns out to be a square, and there are many different representations
of the expression, using the factors of mn.
Euler considered the numbers m,n, p, q as fractions, as to letting y equal to 1 and writing

x = 2λpq, to get the following equation through substitution to the previous equation:

4λ2ap2q2 + 2λbpq + d = λmp2 − λnq2
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Which is a quadratic equation, with respect to both p and q, and we get the following roots
in these formulas;

p =
−λbq ±

√
λmd+ λ2q2(b2 − 4ad+mn)− 4λ3anq4

4λ2aq2 − λm

and

q =
−λbp±

√
−λnd+ λ2q2(b2 − 4ad+mb) + 4λ3amp4

4λ2ap2 − λn

3. A Series for the Solutions

Euler assigned that

p+ p′ =
−2bq

4λaq2 −m

and

q + q′ =
−2bp

4λap2 + n

with p and q being the already discovered values, and p′ and q′ the new values, with q′

being the value given when p′ is substituted into the formula in place for p. A series can be
generated of the following: q, p, q′, p′, q′′, . . ., from the formulas above, with:

p′ =
−2bq

4λaq2 −m
− p

p′′ =
−2bq′

4λaq′2 −m
− p′

p′′′ =
−2bq′′

4λaq′′2 −m
− p′′

and vice versa for q, with q = p′ and −m = n:

q′ =
−2bp′

4λap′2 + n
− q

q′′ =
−2bp′′

4λap′′2 + n
− q′

q′′′ =
−2bp′′′

4λap′′′2 + n
− q′′

With y = 1 in the original formula, the following expression is generated:

2λpq, 2λq′p, 2λp′q′, 2λq′′p′, . . .

and

2λqp, 2λp′q, 2λq′p′, 2λp′′q′, . . .

Looking back at the original formula:

a2x4 + 2abx3y + cx2y2 + 2bdxy3 + d2y4

and setting the root to ax2 − bx− d, we get:

x =
4bd

b2 − 2ad− c
=

−4bd

mn+ 4ad
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with c = mn+ b2 + 2ad. Now that we have a suitable value of x with y = 1, the variables p
and q can be found from:

ax2 + bx+ d = λ(mp2 − nq2)

which becomes:
ax2 + bx+ d

x
=

mp2 − nq2

2pd

with x = 2λpq. Thus, by plugging in A = ax2+bx+d
x

, we get that

2Apq = mp2 − nq2

from which we get p
q
= A+

√
A2+mn
m

, and we get f
g
= p

q
, where we can rightfully assume that

f = p and g = q, and the rest of the work will be carried out by examples. Substituting into
the general formula αA4 ± βB4 equivalent to a square, we can take A

B
= C, so the formula

simplifies to αC4±β =. Letting C = 1+x
1−x

, we get α+β = a2, giving us the following formula:

a2 + 4(α− β)x+ 6a2x2 + 4(α− β)x3 + a2x4 =

4. Example 1

Euler first considered the formula 2A4+B4 equaling a square. This formula is the same as
the one derived from have two numbers A and B with A+B equaling a square and A2 +B2

a fourth power, as presented in [Eul18b]. Therefore, having set A
B

= C, so that 2C4 − 1 is
a square, then α = 2 and beta = −1, from which α + β = 1 = a2, so a = 1, we can plug in
C = 1+x

1−x
back into the equation and get the following:

1 + 12x+ 6x2 + 12x3 + x4

or
(1 + 6x+ x2)2 − 32x2

is equal to a square. Then, substituting the values as follows

1 + 6x+ x2 = λ(p2 + 8q2)

and
x = λpq

we get the equation
1 + 6λpq + λ2p2q2 = λp2 + 8λq2

and then, using the formula for roots for p and q, we get the following:

p =
−3λq ±

√
8λ3q4 + λ

λ2q2 − λ

and

q =
−3λp±

√
λ3p4 + 8λ

λ2p2 − 8λ
then, regardless of how the ± is assigned, we get

p+ p′ =
−6q

λq2 − 1

q + q′ =
−6p

λp2 − 8
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Now Euler looked at the values of p and q that come forth from these functions. Taking
λ = 0, we quickly see q = 0, p = 1 fulfills the requirements. If we take q = 1, we get p = −3±3

1−1
,

but in the original case q = 1 gives p = 7
6
. The relationship of the derived values can be

written as

p+ p′ =
−6q

q2 − 1

q + q′ =
−6p

p2 − 8

And we can set up a series for the numbers q, p, q′, p′, q′′, etc.

q′ =
−6p

λp2 − 8
− q

q′′ =
−6p′

λp′2 − 8
− q′

. . .

and vice versa for p:

p′ =
−6q

q2 − 1
− p

p′′ =
−6q′

q′2 − 1
− p′

. . .

Therefore, from the series where q = 0 and p = 1, we get the following series

0, 1,
6

7
,
239

13
, . . .

From this series, we can take values two at a time to plug into x, and into C = 1+x
1−x

, we

get this series for x: 0, 6
7
, 1434

91
, . . ., and the series for C: 1, 13,−1525

1343
, . . .. Then, looking at the

other of q = 1 and p = 7
6
, we find the series of p, q, p′, q′, . . . to be: 1, 7

6
, 13
239

, . . . from which we
can see that the previous series have already exhausted all solutions, so it is not necessary
to solve for the latter case.

5. Example 2

Then, Euler considered the formula 3A4+B4 equals a square. This formula can be fulfilled
with 3C4 + 1 equaling a square, and it is not hard to observe that C = 0, C = 1, C = 2
fulfills this equation. Since α = 3 and β = 1 here, after setting C = 1+x

1−x
, we get the formula

4 + 8x+ 24x2 + 8x3 + 4x4, which, when divided by 4, yields:

1 + 2x+ 6x2 + 2x3 + x4

The formula can be represented as (1 + x + x2)2 + 3x2, into which, with x = 2λpq, we can
substitute and get:

1 + x+ x2 = λ(p2 − 3q2)

From which the following is derived:

1 + 2λpq + 4λ2p2q2 = λp2 − 3λq2
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Taking λ = 1 and q = 1
2
, the equation gives p = −7

4
, and now we can evaluate the roots of

the quadratic to be:

p =
−λq ±

√
λ− 12λ3q4

4λ2q2 − λ

and

q =
−λp±

√
4λ3p4 − 3λ

4λ2p2 + 3λ

Thus, the solutions give

p+ p′ =
−2λpq

4λ2q2 − λ

and

q + q′ =
−2λp

4λ2q2 + 3λ

Since we already have the λ = 1, q = 1
2
, p = −7

4
case, our series of q, p, q′, p′, q′′, etc. are

formed from p + p′ = −2pq
4q2−1

, and q + q′ = −2p
4q2+3

, which generate the series 1
2
,−7

4
,− 33

122
, . . ..

Then, when x = 2pq, we get x = −7
4
and x = 231

448
, giving C = − 3

11
. For then, the answer is

√
3C4 + 1 =

122

121

6. Example 3

Consider 3A4−B4

2
: since the square now has to be 3

2
C4 − 1

2
, we get α = 3

2
, β = −1

2
, and

therefore a2 = α + β, a = 1, and α− β = 2. The formula of x becomes:

1 + 8x+ 6x2 + 8x3 + x4

or

(1 + 4x+ x2)2 − 3(2x)2

Here, Euler set x = λpq, so

1 + 4x+ x2 = λ(p2 + 3q2)

which produces the following equation in p and q

1 + 4λpq + λ2p2q2 = λp2 + 3λq2

First assuming λ = 1 and q = 1, the equation gives p = 1
2
. Then, taking λ = 3 and p = 1, it

gives q = 1
6
, and we can split the rest of the evaluation into two cases In the first case with

λ = 1, let x = pq, and the equation is now:

p2(q2 − 1) + 4pq + 1 = 3q2

The sum of the roots is p + p′ = −4q
q2−1

. Similarly, q + q′ = −4p
p2−3

. From here, the series

p, q, p′, q′, . . . will evaluate to be 1, 1
6
,− 3

11
,−47

84
, . . .. Since x = λpq = 3pq, we get x =

1
2
,−−3

22
,−141

308
.

7. Conclusion

With this, Euler concludes that he has “more than abundantly indicated the widest use
of this method”, and the proof comes to an end.
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