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1. The Officer Problem

Some say it was Catherine the Great that first posed the question to Euler while he was
visiting the St. Petersburg Academy late in his life: Can one arrange a group of thirty-six
officers of six different ranks, taken from six different regiments, and arranged in a square
in a way such that in each row and column there are six officers, each of a different rank
and regiment?. Even though Euler was never able to rigorously prove that the answer is in
fact no, there is no way to arrange the group of 36, his paper [Eul82] went a ways to prove
its falsehood. In fact, it was not until 1901 that a proof for the afore mentioned problem
was published, and even it was only proven by taking every single possible combination, of
which there are 9408. In this paper, I will discuss the method Euler used to prove a square
with side length 6 will never yield a perfect Graeco-Latin square. Euler proved that squares
of single step construction can not be made when the side length is an even number, and
that double step squares can not be constructed when the side length is in the form 4n+ 2,
along with providing interesting logical insights into why he believed that side length n = 6
is impossible in general. At the end of his paper, Euler conjectured that it is impossible to
build a Latin square for any value in the form 4n+ 2 based on his observations of six-sided
and two-sided Graeco-Latin squares. Although he was ultimately unable to rigorously to
prove this statement in the case of the six-sided square in the officer problem, his logical
process and mathematical persistence are on full display in this paper.

2. Graeco-Latin Squares

Definition 2.1. A Latin square is a square with side length n, such that each row and
column contains the numbers 1, 2, 3 · · · , (n− 1), n exactly once.

There are several different ways to construct Latin squares, the easiest being by the step
method, in which each row is slightly altered based on the row before it. The most simple of
any Latin squares is the single step Latin square, which is constructed by starting with the
numbers 1 through n in ascending order in the first row, and creating each successive row
by moving the number in the first column to the last column, and shifting all other terms to
the left one row. The single step Latin square for a side length n = 6 is

1 2 3 4 5 6

2 3 4 5 6 1

3 4 5 6 1 2

4 5 6 1 2 3

5 6 1 2 3 4

6 1 2 3 4 5.
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Latin squares of step length 2 and greater can also be created by combining numbers into
sets of the same size and changing the order of the numbers from line to line appropriately.
The double step and triple step Latin squares for n = 6 are

1 2 3 4 5 6 1 2 3 4 5 6

2 1 4 3 6 5 2 3 1 5 6 4

3 4 5 6 1 2 3 1 2 6 4 5

4 3 6 5 2 1 4 5 6 1 2 3

5 6 1 2 3 4 5 6 4 2 3 1

6 5 2 1 4 3 6 4 5 3 1 2.

It is important to note that multi step Latin squares can only be formed correctly when the
step size of the square is a divisor of the total side length, n. In other words, double step
Latin squares can only be used to construct squares where n is an even number, triple step
squares only work when n is a multiple of three, and so on.

Definition 2.2. A Graeco-Latin square is a square with side length n such that each term in
the square is represented as pq where p, q ∈ (1, n), each row and column contains all numbers
from 1 to n as both a base and exponent, and each variation of paired base and exponent
appears exactly once in the square.

Euler decided to approach the building of a Graeco-Latin in a different way. He noticed
that every exponent in the square was joined to each base once, and only appeared once in
each row and column. Therefore, he introduced the principal of a guiding formula for an
exponent, which he used extensively to create Graeco-Latin squares.

Definition 2.3. The guiding formula for any exponent, n, is the route that n takes through
the rows of the square with respect to the base of the exponential.

For instance, take the Graeco-Latin square with side length 3

11 23 32

22 31 13

33 12 21.

The guiding formula for the exponent 1 in this square would be the sequence 1, 3, 2, where
1 appears as the exponent over base 1 in row 1, over base 3 in row 2, and over base 2 in row
3. Each exponent in Euler’s square had to have its own guiding formula, and the guiding
formulas had to agree with each other in such a way that every exponent is represented once
per base, once per column, and once per row.

3. Single-Step Squares

Theorem 3.1. There is no possible single step Latin square construction for any side length
n, such that n is even.
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Proof. Let
1 a b c d e etc

be a guiding formula for the exponent 1, where the letters a, b, c, d, e, etc. represent the num-
bers from 2 to n that make up the bases of the exponent 1 in any order. Let α, β, γ, δ, ϵ, etc
denote the column in which the bases are, such that they to take all the values from 2 to n.
The base of 1 in row 2 is denoted by a, and is in column α. Since this is a single step Latin
square, each row has been shifted to the left compared to the previous row. Therefore

α ≡ a+ 1 (mod n)

because in the second row, the value of the base will be one less than the index of the column.
Similarly,

β ≡ b+ 2 (mod n)

since in the third row the bases are shifted 2 places over relative to the index of the column.
More generally, any Greek number p, denoting the column of index p, will be congruent to
its Latin number r plus the value (m− 1), where m is the row that r is in. Since we know
that

α + β + γ + δ + ϵ+ · · · = a+ b+ c+ d+ e+ · · ·
and

α+ β + γ + δ + ϵ+ · · · = ((a+ b+ c+ d+ e+ · · · ) + (1 + 2 + 3 + · · ·+ (n− 1))) (mod n)

we can set

(1 + 2 + 3 + · · ·+ (n− 1)) =
1

2
n(n+ 1) = 0 (mod n).

For 1
2
n(n+ 1) = 0 (mod n) to be true, 1

2
n(n+ 1) must be a multiple of n, which means we

can change the equation to

qn =
1

2
n(n+ 1)

where q is a whole number. Simplifying, we get q = 1
2
(n − 1) which means that 1

2
(n − 1)

must be a whole number. Since 1
2
(n− 1) will only be a whole number if (n− 1) is even, or

n is odd, n cannot be an even number. ■

Euler wished to develop a method which he could use to construct several squares for the
same side length without having to verify every single character in the square by hand. To
do this, Euler let

1 a b c d e etc

be a guiding formula corresponding to the exponent 1, where the index t is defined as the
row number that the base x exists in. For example, when t = 1, x = 1 where t refers to
the first row and x refers to the base number in the guiding formula for the exponent 1.
Similarly, when t = 3, x = b where b is the base that is raised to the power of 1 in row 3.
When we give t all the values from 1 to n, x also receives all values from 1 to n, as is the
definition of a Graeco-Latin square. Euler then let

1 A B C D E Etc.

be a different guiding formula for a square with same side length n as the previous guiding
formula. Euler defined X and T in the same fashion, where X is the value of the base in row
T . Euler wished for a rule to derive one guiding formula for the other, and so he naturally
set T = x and X = t which creates new values for the guiding formula and continues to
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satisfy the requirements of exponential representation for Graeco-Latin squares.

Example 3.1. Let us take the single step Latin square with side length n = 7,

1 2 3 4 5 6 7

2 3 4 5 6 7 1

3 4 5 6 7 1 2

4 5 6 7 1 2 3

5 6 7 1 2 3 4

6 7 1 2 3 4 5

7 1 2 3 4 5 6

and take a random guiding formula for the base 1, which will be our x

x = 1 4 2 7 6 3 5

t = 1 2 3 4 5 6 7.

We can now switch the values of the table to get a new X and T

X = 1 2 3 4 5 6 7

T = 1 4 2 7 6 3 5.

Now, in order to get our new guiding formula in the correct order of terms, we can rearrange
our (X,T ) pairs in order to get the T values to take the form of the natural numbers. By
rearranging the terms, we get

X = 1 3 6 2 7 5 4

T = 1 2 3 4 5 6 7

our second guiding formula. However, this was not the only formula for x and t Euler
discovered that allowed him to build new guiding formulas, in fact he found 10 more, the
second of which is given by

T = t X = 1 + t− x.

Consider the same Latin square and guiding formula from the previous example:

x = 1 4 2 7 6 3 5

t = 1 2 3 4 5 6 7.

Finding the sequence for T is easy, as it is simply 1, 2, 3, 4, 5, 6, 7, but finding values for
X is harder. Whenever x ≥ t + 1, we get a non-positive value for X, which occurs when
x = 4, x = 7, and x = 6. To assign values to X at the values of X not in the set (1, n),
when x = 4, 7, 6, simply reduce the value in (mod n) until it is between 1 and n, so 7 ≡ 0
(mod n), −1 ≡ 6 (mod n), and so forth. Thus, our sequences for X and T are:

X = 1 6 2 5 7 4 3

T = 1 2 3 4 5 6 7

and since our T values are already in the correct order, our third guiding formula is

1 6 2 5 7 4 3.
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Note: Interestingly enough, using either formula on the same sequence, and then the
resulting sequence will give you the sequence you started with. Euler instead noticed that
these two rules for constructing new guiding formulas work well together, and used them
alternately to construct lists of guiding formulas, all derived from a single guide. In this case,
alternating formulas on each derived series results in the discovery of 11 new series before
you get your starting formula again.

4. Multi-step squares

We have already seen Euler prove that single step Latin squares are impossible to build
for side length 6, as no square with an even side length can be constructed for single step
squares. In order to prove no Graeco-Latin square is possible for n = 6, Euler next turned
his attention to double step Latin squares.

Theorem 4.1. A double step Latin square can only be built if n is a multiple of 4.

Proof. Take a double step Latin square with side length n. Let us define t as the vertical
index of x (the row that x is in), and u as the horizontal index of x (the column that x is in).
By examining the square we can come to the following conclusions about the relationship
between x, u, and t. When either u or t is odd, the formula for x is given by

x = t+ u− 1,

and when both u and t are even, we have

x = t+ u− 3.

Now let the series (a, b, c, d, e, etc.) be the guiding formula for any exponent, r, in our double
step square, and let (α, β, γ, δ, ϵ, etc.) be the corresponding sequence of values of u, or column
indices, and let t, the rows, be represented by (1, 2, 3, 4, 5, etc.). The first base term for r will
always be a = α, as the first row in our square simply counts up from 1 to n. Our second
term, b, will have two equations to represent it, one for the case in which β is even, which
would be the equation b = β − 1, and one for the odd value of β, b = β + 1. For term c, we
know that t = 3 which satisfies our condition for formula one, giving us c = γ + 2 for c. d
again gives us two possible equations, d = δ + 3 and d = δ + 1. For term e, as is the case
for every other guiding term, t is odd, so e = ϵ+ 4. This pattern will continue forever, with
every other term from the guiding formula having two case formulas for its value. We can
observe that if the alternating values are all even, our formulas for each term are regular:

a = α, b = β + 1, c = γ + 2, d = δ + 3, etc..

Given the fact that a + b + c + d + · · · = α + β + γ + δ + · · · (mod n), the formula for the
difference of the two sequences must be some multiple of n, similar to our previous proof.
Since we are dealing with a double step Latin squares however, we can set n = 2m, as n
must be an even number, and therefore divisible by 2:

1

2
n(n− 1) = qn, m(2m− 1) = 2qm.

We can then simplify by dividing by m and solve for x

2m− 1 = 2q, q = m− 1

2
,



6 DYLAN SCHULZ

but since both m and q are defined as whole numbers, this equation cannot be true, which
means that it is impossible to find a guide for the square if all the alternating letters are
odd. Now let us assume that out of the alternating numbers, y of them have odd values of u.
Since the difference between an even value of u and an odd value of u is 2, our new equation
can be found by subtracting 2y from our equation where all alternating u values are odd,
which gives us:

1

2
n(n− 1)− 2y = qn.

By letting n = 2m as we did in the earlier equation we get

m(2m− 1)− 2y = 2qm,

which we can see will only be true if m is even, as 2y and 2qm will always be even for any
whole value of y, q,m, which means that m(2m − 1) must also be even. Therefore we can
set m = 2k and n = 4k and simplify our equation

2k(4k − 1)− 2y = 4qk, k(4k − 1)− y = 2qk, y = k(4k − 2q − 1).

There are n different values of u, and y only counts some fraction of every other u value, so
y ≤ 1

2
n or y ≤ 2k must be the case. Since our equation sets y as equal to (4k− 2q− 1) times

m, and (4k− 2q− 1) has to be an odd number because all the coefficients are even numbers,

(4k − 2q − 1) = 1,

which means that we can solve for other variables, and get

y = m, q = 2m− 1.

This means that for there to exist a guiding formula for our double step square, it must
have the properties that half of the alternating letters (β, γ, ϵ, etc.), or 1

4
n = m of the total

letters must be even, and n must be divisible by four, which proves that any whole number
value of n such that n = 4m + 2 (2, 6, 10, 14 · · · ), will never yield a guide for a double step
square. ■

5. Euler’s Conjecture

Euler knew that there were many Latin square possibilities that did not take the form of
a n-step square. For instance, one can make a simple change to any square, formed using
an n-step method, by finding a rectangle inside the square where opposite corners are the
same numbers. To illustrate this, consider the single-step Latin square with n = 6 and it’s
rectangular transformation:

1 2 3 4 5 6 1 2 3 4 5 6

2 3 4 5 6 1 2 6 4 5 3 1

3 4 5 6 1 2 3 4 5 6 1 2

4 5 6 1 2 3 4 5 6 1 2 3

5 6 1 2 3 4 5 3 1 2 6 4

6 1 2 3 4 5 6 1 2 3 4 5.

As you can see, by switching the 3 and 6 in rows 2 and 5, Euler was able to create a completely
new Latin square which actually allows several guiding formulas for all exponents, the list
for the base 1 is

1 6 5 2 4 3, 1 6 5 3 2 4,
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1 4 6 2 3 5, 1 4 2 5 6 3,

1 5 4 3 6 2, 1 5 2 3 6 4,

1 3 4 6 2 5, 1 3 6 5 4 2.

Unfortunately for Euler, although there are plenty of guiding formulas for each base for him
to chose from, there is no way to take one for each base in a way that they all agree with each
other. Euler used this and other methods to create families of squares where determining
the ability of one to create a perfect Graeco-Latin square would tell you whether all the
other squares in the family could yield squares as well. After considering dozens of different
squares constructed methodically and randomly, and examining their families of squares,
Euler concluded that n = 6 could not yield a full Graeco-Latin square, but admitted that he
did not know for sure. He stated that if one did exist, its form would be very irregular, and
that that one would have no easy way of knowing without examining every possible square
of n = 6 side length. Combined with the knowledge that a two by two square can obviously
never create a complete square, Euler conjectured:

Conjecture 5.1. A square with side length n in the form n = 4m + 2 will never yield a
perfect Graeco-Latin square.

Although he was correct in the cases of m = 1, n = 2 and m = 2, n = 6, he was incorrect in
his claim about all larger numbers (10, 14, 18, · · · ). In fact it took over 150 years to disprove
his conjecture with the help of group theory and computers, better specifics of which can
be found in [KS06], and although he was wrong in the end, his investigations were a step
forward for the research into the power of Graeco-Latin squares.
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