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Abstract. In this paper, we will explore one of the several works of Leonhard
Euler and discuss some interesting approaches employed by him to study and
understand the nature of sum of two squares. We will furthermore show that any
prime of the form p = 4k + 1 and p = 4k + 3 is a sum of two squares and not a sum
of two squares respectively utilizing Algebraic Number Theory through both Euler
and Fermat’s work.

1. Introduction

Sum of two squares is one of several interesting Diophantine problems, that which
was explored by Euler in his E228 Paper. However, since Euler’s work, considerable
development within the area of diophantine analysis involving sum of two squares has
been put forth by Pierre de Fermat some of which will be discussed in this paper in
reference to Euler’s proofs.

Interestingly, when exploring sum of two squares of the form, x2 + y2 or xx + yy,
it turns out that working with prime numbers would be easier as there’s a distinct
pattern that can be noticed. Consider the following table:

n Prime Sum of Two Squares
1 1 = 02 + 12

2 Yes 2 = 12 + 12

3 Yes Not a Sum of Two Squares
4 4 = 22 + 02

5 Yes 5 = 22 + 12

6 Not a Sum of Two Squares
7 Yes Not a Sum of Two Squares
8 8 = 22 + 22

9 9 = 32 + 02

10 10 = 32 + 12

11 Yes Not a Sum of Two Squares
12 Not a Sum of Two Squares
13 Yes 13 = 32 + 22

We can continue this table for all n, however, we notice two patterns: Any prime
1
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p = 4k+1 is a sum of two squares while any prime p = 4k+3 is not a sum of two squares.

Euler also showed that at least up to 200, the multitude of numbers which are
not sums of two squares is in fact greater than the multitude of which are sums of
two squares. This will be key in some of the propositions that he later lays and in the
extension through Fermat’s work.

We note that propositions and proofs explored in this paper have been written
by Euler and Fermat respectively. This paper will simply explore these propositions
and proofs, expanding on their implications and extending on the idea of Sum of Two
Squares.

Let’s first begin with a few definitions.

Definition 1.1. For a, b ∈ Z, a is considered a divisor of b if there exists an integer
x such that ax = b. b is then divisible by a, denoted, a|b and refer to b as a multiple
of a.

Definition 1.2. A positive integer p is prime if p has no proper divisors. If p ∈ Z+,
then the primes p1, p2, . . . , pk−1, pk satisfy p1 × p2 × · · · × pk−1 × pk where the product
p1 × p2 × · · · × pk−1 × pk is the prime factorization of p.

Definition 1.3. If the only common divisors of a and b are units, then a, b ∈ Z are
relatively prime.

Definition 1.4. Consider 1|a,−1|a or a|a and −a|a where a ∈ Z. −1, 1, a,−a are the
trivial divisors of a where −1 and 1 are units. Any other divisors are referred to as
proper divisors.

Definition 1.5. Given a, b ∈ Z, we define the greatest common divisor function,
gcd, of a and b, denoted as gcd (a, b) as some positive integer c such that c|a and c|b.
As well as for all d such that d|a, d|b and d|c. This also includes the largest such
positive integer.

We will make more definitions as we continue.

Euler noted several interesting observations on his work on Sum of Two Squares
that which are shared below:

He noticed that since each square number is either even, in which case it would
be divisible by 4 and contained in the form 4a, or odd, in which it case it would be
contained in the form 8b+ 1, where each number formed from two squares will be:

1. A sum of two even squares and will be of the form 4a+ 4b, suggesting that it
will be divisible by 4
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2. The sum of two squares, one odd and one even, 4a+ 8b+ 1, will be contained
in the form 4a+ 1, and thus, will exceed a multiple of 4 by one

3. The sum of two odd squares will be of the form 8a+1+8b+1 = 8a+8b+2 and
will be contained in the form 8a+ 2 suggesting that it will exceed a multiple
of eight by two.

As such, it can be concluded that since all odd numbers will either exceed a multiple
of four by one or are one less than a multiple of four, following the forms of 4n+ 1
and 4n − 1 respectively, then no odd numbers of the form 4n − 1 can be sums of
two squares. This implies that all numbers contained within the form of 4n− 1 are
therefore not part of the group of numbers that which follow the sums of two squares
as does of the form 4n+ 1.

We can then also comment upon the unequal even numbers, that is, they either
ecessed a multiple of eight by two or are two less than a multiple of eight and follow
the form, 8n+ 2 and 8n− 2 respectively. Therefore, no number of the form 8n− 2
can form sums of two squares and will therefore not be part of the group of numbers
that can form a sum of two squares such as of the form 8n+ 2.

But while we have established that numbers of the form 4n + 1 and 8n + 2, in
general form sums of two squares, there are plenty that don’t follow this establishment
such as 21, 33,57, 69 and more.

Lemma 1.1. If a number p is a sum of two squares, then the numbers 4p, 9p, 16p, and,
in general, nnp will be sums of two squares.

This was shown by Euler as he considered that since p = a2+b2, then, 4p = 4a2+4b2,
9p = 9a2+9b2, 16p = 16a2+16b2, and as such, n2p2 = n2a2+n2b2, which are similarly
sums of two squares.

Lemma 1.2. If a number p is a sum of two squares, then so will be 2p and, in general,
2n2p will be q sum of two squares.

Euler showed that if we let p = a2 + b2; we will have 2p = 2a2 + 2b2. But since
2a2+2b2 = (a+ b)2+(a− b)2, therefore, 2p = (a+ b)2+(a− b)2, and therefore also the
sum of two squares. This allowed him to conclude that 2n2p = n2 (a+ b)2+n2 (a− b)2

Lemma 1.3. If the even number 2p is a sum of two squares, then half of it, p, will also
be a sum of two squares.

Euler showed this by letting 2p = a2 + b2; where both the numbers a and b will be
even and odd. This suggests, that both (a+ b) /2 and (a− b) /2, in either cause, will be
integers. As such, it can then be expressed that a2+b2 = 2 ((a+ b) /2)2+2 ((a− b) /2)
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and, by substitutiong, would yield, p = ((a+ b) /2)2 + ((a− b) /2)2

Using this information, we will now begin with a few theorems.

Theorem 1.4. If p and q are two numbers, each of which is the sum of two squares,
then their product pq will also be the sum of two squares.

Proof. Let p = a2 + b2 and q = c2 + d2

pq =
(
a2 + b2

) (
c2 + d2

)
=⇒ a2c2 + a2d2 + b2c2 + b2d2

This can be expressed as

pq = a2c2 + 2abcd+ b2d2 + a2d2 − 2abcd+ b2c2

Which simplifies to,
pq = (ac+ bd)2 + (ad− bc)2

This shows that the product pq will be a sum of two squares. ■

2. Proposition 1

Euler now lays the first of his seven propositions with regards to the sum of two
squares,

Proposition 2.1. If the product pq is a sum of two squares and one factor p is a
prime number and similarly a sum of two squares, then the other factor q will also be
a sum of two squares.

Proof. Let pq = a2 + b2 and p = c2 + d2. Since p is a prime number, the numbers c

and d will be prime between themselves. Therefore, q =
a2 + b2

c2 + d2
, suggesting that q is

an integer and the term a2 + b2 will be divisible by c2 + d2 or rather, c2 + d2|a2 + b2.

cc
(
a2 + b2

)
= a2c2 + b2c2

This too will be divisible by c2 + d2, and since the number,

aa
(
c2 + d2

)
= a2c2 + a2d2

is also divisible by c2 + d2, it is necessary for the difference of these numbers,

a2c2 + b2c2 − a2c2 − a2d2 = b2c2 − a2d2

to be divisible by c2+ d2. But since c2+ d2 is a prime number, with b2c2− a2d2 having
factors bc+ ad and bc− ad, of these two, is going to be divisible by c2 + d2.

Let bc± ad = mc2 +md2, then,

b = mc+ x and a = ±md+ y

where x and y are either positive or negative integers. When substituting these
values for b and a, the equation bc ± ad = mc2 + md2 will take on the form:
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mc2 + cx+md2 ± dy = mc2 +md2 or cx± dy = 0.

We can then conclude that x
y
= ∓d

c
and since d and c are prime between them-

selves, x = nd and y = ∓nc, through which, we obtain a = ±md∓nc and b = mc+nd
where a and b ought to have values such that the number pq = a2 + b2 is divisible by
the prime number p = c2 + d2.

Substituting thoe values,

pq = m2d2 − 2mncd+ n2c2 +m2c2 + 2mncd+ n2d2

or pq = (m2 + n2) (c2 + d2). But since p = c2+d2, we will have have q = m2+n2; and
since the product pq is the sum of two squares with one factor p prime and similarly a
sum of two squares c2 + d2, it follows that the other factor q will also be a sum of two
squares. ■

Corollary 2.1. If the sum of two squares is divisible by a prime number which itself
is sum of two squares, the quotient resulting from the division will also be a sum of
two squares. So if the sum of two squares is divisible by some number from these
prime numbers 2, 5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, etc., the quotient will always
be a sum of two squares.

Example 2.1. Let’s consider the number 125 which can be written as 102 + 52 or
10 · 10 + 5 · 5. This is divisible by the prime number 5 which, in turn, is the sum of
two squares, 22 + 12 or 2 · 2 + 1 · 1. Then the quotient, 125/5 = 25 is also a sum of
two squares where 25 = 42 + 32 = 4 · 4 + 3 · 3.

Corollary 2.2. If the letters α, β, γ, δ, etc. denote such prime numbers which are
sums of two squares, it is evident from this that if the product αq is a sum of two
squares, then the factor q will also be a sum of two squares.

Example 2.2. Consider α = 13 that’s also a prime. This is also a sum of two squares
expressed as 13 = 32 + 22 = 3 · 3 + 2 · 2. Consider another number q = 17 = 42 + 12 =
4 · 4 + 1 · 1. Then the product αq = 13 · 17 = 221 which is a sum of two squares as it
can be written as 102 + 112 = 10 · 10 + 11 · 11.

Corollary 2.3. It is easily obtained later on that if the product αβq is a sum of two
squares, the factor q will also be a sum of two squares. Indeed, because αβq is a sum
of two squares, by the corollary above, βq will also be a sum of two squares; and by
the same reaasoning, q, will also be a sum of two squares.

Example 2.3. Consider the product αβq = 1105 which is taken as α = 13, β =
17 and q = 5. This is a sum of two squares in exactly 4 ways, one of which is,
312 + 122 = 31 · 31 + 12 · 12. By the corollary, the product βq is also a sum of two
squares which is 17 × 5 = 85. This is in fact a sum of two squares as 85 can be
rewritten as 92 + 22 = 9 · 9 + 2 · 2.
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Corollary 2.4. It is evident that if the product αβγδϵq is a sum of two squares, then
the factor q is also a sum of two squares; hence if the product pq is a sum of two
squares, and the factor p is a product of however many prime numbers, each of which
is a sum of two squares, then the other factor q will also be a sum of two squares.

3. Proposition 2

Euler makes another proposition,

Proposition 3.1. If the product pq is a sum of two squares but its factor q is not a
sum of two squares, then the other factor p, if it is a prime number, will not be a sum
of two squares, but if however it is not prime, it will certainly have at least one prime
factor which is not a sum of two squares.

Proof. Since the factor p is either a prime number or composite, each case must be
analyzed separately.

Let p be a prime number, if it was a sum of two squares, the factor q would also be a
sum of two squares, which is false according to the hypothesis. This follows that the
factor p is in fact not a sum of two squares.

Let p be a composite number, as established earlier, if the prime factors of p are sums
of squares, then the factor q will also have its prime factors as sums of squares.

Thus, it can be concluded that since q is not a sum of two squares, not all fac-
tors of p are soms of two squares either. ■

Corollary 3.1. The the product pq is a sum of two squares, but one of its factors q
cannot be expressed as two squares, then the other factor p is either itself not a sum
of two squares or will have at least one prime factor which cannot be expressed as two
squares.

Example 3.1. Let’s consider the case of pq = 45. If we let p = 3, then q = 15. q has
a factor 3 which itself cannot be expressed as a sum of two squares.

Corollary 3.2. It can’t be consluded that the other factor p is not a sum of two
squares. It hasn’t yet been established in the case whenp is a composute number,
since p can have a factor which can’t be written as the sum of two squares eventhough
p itself is a sum of two squares.

Corollary 3.3. If p is a sum of two squares, then it has not just one but at least two
prime factors which cannot be written as the sum of two squares.

4. Proposition 3

We will now explore another proposition made by Euler. The proof of this proposition
shows that the other part c2 + d2, a sum of two squares, is divisible by p in a similar
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way that a2 + b2 is divisible by p. He also shows that neither of the formulas in the
sum of squares c2 + d2 exceed the square p2, and thus, the sum of tqo squares c2 + d2

will be produced that is not greater than 1
2
p2 but is still divisible by p.

Proposition 4.1. If the sum of two square primes between themselves, a2 + b2, is
divisible by a prime number p, a sum of two other squares, c2 + d2 can always be
generated which is divisible by that same number p so that the sum c2 + d2 is not
greater than 1

2
p2

Proof. Let the sum of two squares, prime, between themselves a2 + b2 be divisible by
the number p.

Let a and b be numbers of any size.

Since neither a nor b is divisible by p, the numbers a and b can be expressed as
a = mp± c and b = np±d, such that m and n are selected where c and d don’t exceed
the value of 1

2
p.

As such,

a2 + b2 = m2p2 ± 2mcp+ c2 + n2p2 ± 2ndp+ d2

However, since this whole expression is divisible by p as established in the proposition,
and the terms,

m2p2 ± 2mcp+ n2p2 ± 2ndp

contain the factor p, making it divisible, that suggests that c2 + d2 is also divisible by
p, which is a sum of two squares.

However, since the roots c and d don’t exceed 1
2
p as stated earlier, neither of the

formulas in the sum of squares c2+ d2 will exceed p2, and thus, the sum of two squares
c2 + d2 can be produced that is not greater than 1

2
p2, which is still divisible by p. ■

Corollary 4.1. If there is no sum of two squares, prime between themselves, divisible
by p, and doesn’t exceed 1

2
p2, then there is num of two squares prime between

themselves which is divisible by the number p.

Corollary 4.2. If there is num of squares prime between themselves, less than
1
2
×9 = 9

2
, and divisible by 3, then it clearly follows that there is no sum of two squares

prime between themselves which is divisible by 3. And in a similar way by the number
7, since there is no sum of two squares less than 1

2
× 72 = 49

2
, and divisible by 7, it

follows that certainly neither among larger numbers is there a sum of two squares
prime between themselves which is divisible by 7.

In the above propositions, we show a glimpse of some of Euler’s findings and his
work on the Sum of Two Squares. Euler proposed four more propositions, that which
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we won’t explore in this paper, but it sets the precedence that there was certainly a
lot of math to explore in the Sum of Two Squares. We will now extend the sum of
two squares through some of Fermat’s work.

5. Extensions

Proposition 5.1. If n ≡ 3 (mod 4), then n is not a sum of two squares.

Lemma 5.1. For a prime p ≡ 1 (mod 4), there exists x ∈ Z such that p | (x2 + 1)
(Fermat’s Lemma)

Essentially, what we are trying to establish here is that Fermat asserts that a specific
form of sum of two squares is divisible by p. Why is this significant? In short, its
relevance pertains to how Gaussian integers work, that is, x2 + 1 is reducible over C
where, (x2 + 1) = (x+ i) (x− i). From this, we can ascertain that p | (x+ i) and p |
(x− i) based on Euclid’s Lemma.

However, it must also be considered that in the Quotient field Q [i], the element
(x+ i) /p = x

p
+ 1

p
i where 1/p is /∈ Z. That would suggest p is in fact not irreducible

therefore, factorizing as,
p = (a+ bi) (c+ di)

with 1 < N (a+ bi) , N (c+ di). This also suggests that,

p = N (a+ bi) = (a+ bi) (a− bi) = a2 + b2

where N (p) = p2. This also further develops the idea that c + di = a − bi where a
prime p is irreducible must split into a product of two conjugate irreducible elements
over the field Z [i].

Proposition 5.2. If p is a prime, then p | (p− 1)! + 1. (Wilson’s Theorem)

Proof. We see that,
(p− 1)! ≡ −1 (mod p)

Alternatively, we can multiply all the non-zero elements of the finite field Fp := Z/pZ,,
getting -1.

We can show this for p = 2 where 2 = (2− 1)! + 1, thus, we can assume with
fair certainty that p is an odd prime.

Consider the map ι: F×
p → F×

p given by x 7→ x−1. This map is a bijection, that
is, every element has a unique inverse.

Furthermore, the “fixed points” of the map ι are those elements x = ι (x) which
is equal to their own inverse, that is, x = x−1, which can be rewritten as x2 = 1 with
the solutions, x = ±1.
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This also suggests that the polynomial x2 − 1 can have at most two roots in the field
F×
p , implying that every element different from ±1 in F×

p is distinct from its inverse.
Thus, when we multiply out the non-zero elements of F×

p , we get,

1 · −1 ·
(
x1 · x−1

1

)
· · ·

(
x p−3

2
· x−1

p−3
2

)
All the elements apart from ±1 can in fact be paired with their distinct and unique
multiplicative inverse, making the product −1 clear. ■

This can further be explored through Wilson’s theorem to prove Fermat’s lemma
which eventually leads to Fermat’s Two Squares Theorem. The proof utilized the idea
of reduced residue system and eventually yields the theorem:

Theorem 5.2. A prime p is a sum of two integer squares if and only p = 2 or
p = 4k + 1. (Fermat’s Two Squares Theorem)

6. Conclusion

The Sum of Two Squares is a vast area of Mathematics that which has been explored
by both Euler and Fermat. Euler’s work through his seven propositions shows the
vastness of the underlying math within where he analyzed several patterns, drawing
multiple corollaries. Similarly, the discovery of which primes are sums of two squares
was primarily led by Fermat through his theorem.

This paper could only explore three of the seven propositions that Euler laid out in
his paper E228 and the development towards Fermat’s Theorem, however, we expand
on several examples showing Euler’s Corollaries while exploring his work including
explanation and its implications through several examples.

7. Note

As stated earlier in the Introduction, propositions and proofs explored in this paper
have been written by Euler and Fermat respectively. This paper has simply explored
these propositions and proofs, expanding on their implications and extending on the
idea of Sum of Two Squares.
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