
ON EULER’S FAST CONVERGING SERIES OF π

ARJUN BHOBE

In this paper we will discuss Euler’s series expansions of π. The initial motivations for
finding a new series for π were discussed in [Eul44]. The Leibiniz series, a well-known series
for π,

π = 4
∞∑
k=0

(−1)k

2k + 1
,

converges extremely slowly where it takes about 1050 terms to yield 100 digits. Given the
importance of π throughout mathematics, finding an alternative series merits deep investi-
gation.

We should note the Leibniz formula is actually a special case of the following arctan series
also known as the Greogry’s series

arctanx =
∞∑
k=0

(−1)k
x2k+1

2k + 1
.

Now instead of looking at the Leibniz series (i.e. x = 1) we instead find smaller series and
scale them up to π. For instance we find in the case that arctanx = 30◦, we get

30◦ = arctan
1√
3
= 6

[
1√
3
− 1

3 · 3
√
3
+

1

5 · 32
√
3
− 1

7 · 33
√
3
+

1

9 · 34
√
3

]
.

Scaling up we get,

π = 6arctan
1√
3
= 2

√
3(
1

1
− 1

3 · 3
+

1

5 · 32
− 1

7 · 33
).

This is much better than what we had before. We can get 100 figures of π with 210 terms
of calculation. Euler raises the problem that in order to find an approximation of π we need
a just as precise approximation for

√
3. We should note that it probably was not a difficult

problem to calculate this number for Euler given the recurrences in continued fractions and
other tools to generate fast converging series of radicals. However, this is still an intermediate
step and it’s worth not having to go through that effort if a ”better” series exists.

Euler begins this by providing the following shortcut. Note that

arctan
1

p
=

1

p
− 1

3p3
+

1

5p5
− 1

7p7
etc..

Now note the partial sum S where n is even

S =
1

p
− 1

3p3
+

1

5p5
− · · · − 1

(2n− 1)p2n−1
.
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Then given that partial sum S, the entire sum can be represented as

S +
1

p2n+1
(

1

(1 + p2)(2n+ 1)
− 2p2

(1 + p2)2(2n+ 1)2

+
22(p4 − p2)

(1 + p2)3(2n+ 1)3
− 23(p6 − 4p4 + p2)

(1 + p2)4(2n+ 1)4
.)

Finally this can be approximated as

S +
1

p2n−1(2n(1 + p2) + p2 − 1)
,

which gets more accurate as we increase the value of n.
Next he makes note of the following arctan identity,

π

4
= arctan 1 = arctan

1

a
+ arctan

1

b
,

where a and b are integers such that a+b
ab−1

= 1.
We now examine the case a = 2 and b = 3, which gives us the following series

1

1 · 2
− 1

3 · 23
+

1

5 · 25
− 1

7 · 27
+ etc.

+
1

1 · 3
− 1

3 · 33
+

1

5 · 35
− 1

7 · 37
+ etc..

Although we split into two different series, both series converge faster than the one of
arctan 1√

3
. Furthermore, these series do not need the expansion of the square root making

the work much easier.
Now it can be found using properties of the shortcut we had used earlier to determine

that to find 100 digits of precision, the first series,

1

1 · 2
− 1

3 · 23
+

1

5 · 25
− 1

7 · 27
+ etc.,

needs 154 terms calculated which needs to be added to 1
2307·1543

For the second series,

+
1

1 · 3
− 1

3 · 33
+

1

5 · 35
− 1

7 · 37
+ etc.,

this turns out to be 98 terms, bring the grand total to 252 terms for 100 digits of precision.
To get the same result, from arctan 1√

3
we would have also needed over 200 terms. Again,

given the benefits we outlined above, this is still a better series.
In, [Eul98], Euler uses a slightly different approach. He continues to use arctan identities,

but uses the power series for the following polynomial as opposed to the Gregory series.
Euler begins with the binomial

x4 + 4 = (2 + 2x+ x2)(2− 2x+ x2).

Next we note that

f(x) =

∫
x2 + 2x+ 2

x4 + 4
dx =

∫
1

x2 − 2x+ 2
dx = arctan

x

2− x
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Next we calculate we note the following antiderivatives,

f(1) =
π

4
, f

(
1

2

)
= arctan

1

3
, f

(
1

4

)
= arctan

1

7
.

Using these antiderivatives, we’ll generate the series for π from the following arctan,

(0.1) 8 arctan
1

3
+ 4 arctan

1

7
= arctan 1 = π.

Now let’s define the following integrals

a =

∫
dx

x4 + 4
; b =

∫
xdx

x4 + 4
; c =

∫
x2dx

x4 + 4
.

Thus

(0.2) f(x) = 2a+ 2b+ c

The integrand of a can be expressed as

1

x4 + 4
=

1
4

1 + x4

4

=
1

4

∞∑
i=0

(
−x4

4

)i

.

We can obtain similar series for the integrands of b and c by multiplying x and x2 respec-
tively.

Now we cane obtain a, b, and c as the following series from integrating the terms in the
power series:

a =
x

4

[
1− 1

5

x4

4
+

1

9

(
x4

4

)2

− 1

3

(
x4

4

)3

+ . . .

]

b =
x2

8

[
1− 1

3

x4

4
+

1

5

(
x4

4

)2

− 1

7

(
x4

4

)3

+ . . .

]

c =
x3

4

[
1

3
− 1

3

x4

4
+

1

11

(
x4

4

)2

− 1

15

(
x4

4

)3

+ . . .

]
.

For our first case f(1) = π
4
. We we get the following values for a, b and c.

a =
1

4

(
1− 1

5
· 1
4
+

1

9
· 1

42
− 1

13
· 1

43
+

1

17
· 1

44
− etc.

)
b =

1

8

(
1− 1

3
· 1
4
+

1

5
· 1

42
− 1

7
· 1

43
+

1

9
· 1

44
− etc.

)
c =

1

4

(
1

3
− 1

7
· 1
4
+

1

11
· 1

42
− 1

13
· 1

43
+

1

19
· 1

44
− etc.

)



4 ARJUN BHOBE

Using the formula (0.2) we get

π = 2

(
1− 1

5
· 1
4
+

1

9
· 1

42
− 1

13
· 1

43
+

1

17
· 1

44
− . . .

)
(0.3)

+ 1

(
1− 1

3
· 1
4
+

1

5
· 1

42
− 1

7
· 1

43
+

1

9
· 1

44
− . . .

)
+ 1

(
1

3
− 1

7
· 1
4
+

1

11
· 1

42
− 1

15
· 1

43
+

1

19
· 1

44
− . . .

)
.

This series of π performs much better compared to Leibniz given that each term in the series
decreases by a factor of 4. However, although it may seem we’ve completed our job, we can
do even better by expanding the rest of the terms. For our next case of x = 1

2
we get,

a =
1

8

(
1− 1

5
· 1

64
+

1

9
· 1

642
− 1

13
· 1

643
+ etc.

)
b =

1

32

(
1− 1

3
· 1

64
+

1

5
· 1

642
− 1

7
· 1

643
+ etc.

)
c =

1

32

(
1

3
− 1

7
· 1

64
+

1

11
· 1

642
− 1

15
· 1

643
+ etc.

)
,

which culminates to

arctan
1

3
=

1

4

(
1− 1

5
· 1

64
+

1

9
· 1

642
− 1

13
· 1

643
+ etc.

)
(0.4)

+
1

16

(
1− 1

3
· 1

64
+

1

5
· 1

642
− 1

7
· 1

643
+ etc.

)
+

1

32

(
1

3
− 1

7
· 1

64
+

1

11
· 1

642
− 1

15
· 1

643
+ etc.

)
.

For our final case of x = 1
4
we get,

a =
1

16
(1− 1

5
· 1

1024
+

1

9
· 1

10242
− 1

13
· 1

10243
+ etc.)

b =
1

128
(1− 1

3
· 1

1024
+

1

5
· 1

10242
− 1

7
· 1

10243
+ etc.)

c =
1

256
(
1

3
− 1

7
· 1

1024
+

1

11
· 1

10242
− 1

15
· 1

10243
+ etc.)

which similarly culminates to,

arctan
1

7
=

1

8
(1− 1

5
· 1

1024
+

1

9
· 1

10242
− 1

13
· 1

10243
+ etc.)(0.5)

+
1

64
(1− 1

3
· 1

1024
+

1

5
· 1

10242
− 1

7
· 1

10243
+ etc.)

+
1

256
(
1

3
− 1

7
· 1

1024
+

1

11
· 1

10242
− 1

15
· 1

10243
+ etc.).
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Finally we’ll substitute (0.1) with (0.4) and (0.5) to get our final series of

π = 2(1− 1

5
· 1

64
+

1

9
· 1

642
− 1

13
· 1

643
+ etc.)

+
1

2
(1− 1

3
· 1

64
+

1

5
· 1

642
− 1

7
· 1

643
+ etc.)

+
1

4
(
1

3
− 1

7
· 1

64
+

1

11
· 1

642
− 1

15
· 1

643
+ etc.)

+
1

2
(1− 1

5
· 1

1024
+

1

9
· 1

10242
− 1

13
· 1

10243
+ etc.)

+
1

16
(1− 1

3
· 1

1024
+

1

5
· 1

10242
− 1

7
· 1

10243
+ etc.)

+
1

64
(1− 1

7
· 1

1024
+

1

11
· 1

10242
− 1

15
· 1

10243
+ etc.)

This performs even better than the new series that we had found earlier with the expression
given that our terms are now decreasing by factors of 64 and 1024. Furthermore, Euler notes
the utility of this series given that the terms expressible by an ever decreasing power of 2,
making particularly efficient to write out π in binary.
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