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1 Fermat’s Last Theorem

1.1 Overview

Fermat’s Last Theorem states that there are no natural numbers a, b, c, n
that satisfy an + bn = cn and n > 2.

For n = 0, the equation simply reads a + b = c which trivially has
solutions. For n = 1, the equation takes the familiar form a2+b2 = c2, which
has been long known to have infinitely many solutions.

However, for values of n greater than 2, no solutions have been found,
and in the 1990s, it was shown that no solutions exist.

1.2 Cases

Using the property of exponents xab = (xa)b, it can be easily shown that
many values of n are redundant cases. For example, any a, b, c that satisfy
a6 + b6 = c6 must also satisfy both (a3)2 + (b3)2 = (c3)2 and (a2)3 + (b2)3 =
(c2)3. In general, for any k = pq, any a, b, c that satisfy ak + bk = ck must
also satisfy both (ap)q +(bp)q = (cp)q and (aq)p+(bq)p = (cq)p. Thus, for any
value of n to have integer solutions, there must also exist integer solutions for
all factors of that n. Therefore, to prove Fermat’s Last Theorem, it suffices
to prove that there are no integer solutions in the cases where n is equal to
either 4 or any odd prime.
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2 Euclid’s Formula for Pythagorean Triples

Lemma 1. For any primitive triple a, b, c, one of a, b must be even and the
other must be odd. Consequently, c must also be odd.

Proof. If a, b are both even, then a2 + b2 is also even, which forces c to be
even. This contradicts our assumption that the triple is primitive.

If a, b are both odd, then a2 + b2 is also even, which forces c to be even.
Thus, a, b, c can be written in the forms a = 2x + 1, b = 2y + 1, c = 2z. We
obtain the following equations:

(2x+ 1)2 + (2y + 1)2 = (2z)2

4x2 + 4x+ 4y2 + 4y + 2 = 4z2

2x2 + 2x+ 2y2 + 2y + 1 = 2z2

2(x2 + x+ y2 + y) + 1 = 2(z2)

The LHS of the equation produces an odd number, while the RHS pro-
duces an even number. Thus, we arrive at a contradiction. This means that
a, b cannot both be odd in a Pythagorean triple.

Therefore, in a Pythagorean triple, a, b cannot have the same parity, so
one must be even and one must be odd.

QED

Lemma 2. If natural numbers a, b, c form a Pythagorean triple, then a, b take
the form p2−q2, 2pq, withc = p2+q2 for natural numbers p, q with (p, q) = 1,
and one of p, q is odd while the other is even.

Proof. Since c > a, it can be written in the form c = a + bq
p
with relatively

prime p, q. From the equation a2 + b2 = c2, we get the following identities:

a2 + b2 = (a+
bq

p
)2 =⇒ a2 + b2 = a2 +

2abq

p
+

b2q2

p2

=⇒ b2 =
2abq

p
+

b2q2

p2
=⇒ b =

2aq

p
+

bq2

p2

bp2 = 2apq + bq2 =⇒ (a)(2pq) = (b)(p2 − q2)

∴
a

b
=

p2 − q2

2pq
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Since p and q were defined to be relatively prime, p− q2

p
is not an integer,

so p2− q2 is not divisible by p. The same reasoning shows that p2− q2 is not
divisible by q. Thus, the only factors that can be shared between p2− q2 and
2pq are 1 and 1.

If p2 − q2 shares no common factor with 2pq other than 1, which occurs
if one of p, q is even while the other is odd, then the previous identity forces
a = p2 − q2 and b = 2pq.

If p2 − q2 shares the common factor 2 with 2pq, then it is possible that
a, b, c take the form a = p2−q2

2
, b = pq. In this case, p and q must be both

even or both odd. They cannot both be even because that would contradict
the definition that p and q are relatively prime, so p and q are odd. We can
then define 2r = p+ q and 2s = p− q, which causes:

a =
p2 − q2

2
=

(p+ q)(p− q)

2
=

(2r)(2s)

2
= 2rs

b = pq =
1

4
(4pq) =

1

4
(p2 + 2pq + q2 − p2 + 2pq − q2)

=
1

4
(p2 + 2pq + q2)− 1

4
(p2)− 2pq + q2 = (

p+ q

2
)2 − (

p− q

2
)2 = r2 − s2

Since a = 2rs is odd, b = r2−s2 must be even. Therefore, r and s must have
opposite parity. Thus, in all cases, a and b take the forms p2 − q2 and 2pq.

QED

3 Proof for n=4

Theorem 3. The equation a4 + b4 = c4 has no solutions for natural a, b, c.

Proof. Any a, b, c that satisfy a4 + b4 = c4 also satisfy a4 + b4 = (c2)2. Thus,
it suffices to show that the equation a4 + b4 = c2 has no solutions for natural
a, b, c (and in fact, this is a stronger version of that problem).

We will assume that there exist values of a, b, c that satisfy the above
equation, and that (a, b) = 1. Lemma 2 allows us to write those variables in
this form:

a2 = p2 − q2

b2 = 2pq
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where a is odd, b is even, (p, q) = 1, and one of p, q is even while the other
is odd.

The first equation can be written as a2 + q2 = p2, which means a, q, p
form a Pythagorean triple. We know that a is odd, which forces q even and
p odd.

Since 2pq is equal to a square, and (p, q) = 1, 2q and p must both be
square. We can define r2 = p

Since p2 − q2 = a2, we can write p, q in the forms:

p = m2 + n2

q = 2mn

for relatively prime m,n with one even and one odd.
Since 2q = 4mn is equal to a square, mn must be square. Since (m,n) =

1, both m and n must be square. Therefore we can set

m = x2

n = y2

which creates the identity

r2 = p = m2 + n2 = x4 + y4

Since x4 + y4 = r2, we have generated a new solution to the equation
a4 + b4 = c2

We can write the following identities relating a to x and b to y:

a =
√

p2 − q2 =
√

(m2 + n2)2 − (2mn)2 =
√

(m2 − n2)2 = m2−n2 = x4−y4 = (x2+y2)(x2−y2)

∴ a ≥ x2 + y2 =⇒ a > x2 =⇒ a > x

∴ a > x

also:
b =

√
2pq =

√
2p(2mn) =

√
4mnp =

√
22x2y2p = 2xy

√
p

∴ b > y

Thus, we have shown that if there exist natural a, b where a4 + b4 is
square, it is possible to generate natural x < a and y < b where x4 + y4
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is also square. But this process can be repeated an arbitrary number of
times, which implies that there exist natural numbers arbitrarily small. This
contradicts the well-ordering property of the natural numbers.

Thus, there do not exist natural values of a, b such that a4+b4 is a square.
Therefore, there are no integer solutions to a4 + b4 = c4

QED

4 Summary

This paper has presented a comprehensive proof that Fermat’s Last Theorem
holds for n=4. It has done so by showing that any solutions must take
a certain form and the existence of a solution would imply the generation
of an infinitely long string of strictly decreasing positive integers, a logical
impossibility. Thus, one of the cases of Fermat’s Last Theorem has been
resolved, and our focus shifts to the cases of odd prime values of n.
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