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Abstract. In this paper we present two proofs of Euler’s ratio-sum theorem for the

concurrent cevians of a planar triangle and provide an analogue of the theorem and its

proof for spherical triangles.

1. Introduction

Two well-known theorems in triangle geometry relating to concurrency and collinearity

respectively are Ceva’s theorem, which provides a relationship between the parts of the sides

of a triangle that are created by drawing concurrent cevians, and Menelaus’ theorem, which

describes the relationship between the ratios formed by drawing a transversal line that cuts

the three sides of the triangle. Euler’s ratio-sum theorem (check [1]) is of a similar type: it

involves a relation between the parts of a triangle’s concurrent cevians that can then be used

to construct the triangle given the lengths of those parts.

2. The Triangle Construction Problem

Around 1812, Euler considered the problem of constructing a triangle when the lengths of

the ‘six parts’ of its concurrent cevians (considering that they are divided by the point of

intersection) are given. He soon noticed a relation between the six lengths which he used

to solve the problem. His proof of this theorem offers another glance into his masterful

command of algebraic manipulation, relying only on standard formulae for the area of a

triangle and the angle-sum property of the triangle.

Figure 1
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Theorem 2.1. Consider a triangle ABC and cevians Aa,Bb and Cc that coincide at O.

Then the following property always holds:

AO

Oa
· BO

Ob
· CO

Oc
=

AO

Oa
+

BO

Ob
+

CO

Oc
+ 2.

Remark 2.2. Notice that if we take O to be the centroid of the triangle, the ratios AO
Oa

, BO
Ob

and CO
Oc

are all 2. In that case, the right-hand side of our equation becomes 23 = 8 and the

left-hand side is 2(3) + 2 = 8.

Proof. We can assign names to the parts AO,BO,CO and Oa,Ob,Oc as follows:

AO = A,BO = B,CO = C,Oa = a,OB = b, OC = c.

From Figure 1, we can see that p+ q+ r = 180◦. We now turn to the popular technique of

using triangle area ratios to establish relations between the sides and angles of the triangle.

We have,

[AOc] =
1

2
Ac sin q.

Similarly, [BOc] =
1

2
Bc sin p, and [AOB] =

1

2
AB sin(p+ q) =

1

2
AB sin r.

Remark 2.3. Note that the last equality followed from the identity sinx = sin(180− x).

Now, since [AOB] = [AOc] + [BOc], we have

(2.1) AB sin r = Ac sin q +Bc sin p.

We can similarly use area ratios on triangles [AOC] and [BOC] to obtain the equations

BC sin p = Ba sin c+ Ca sin q.(2.2)

CA sin q = Cb sin p+ Ab sin r.(2.3)

We divide both sides of Equation 2.1 by ABc to obtain

(2.4)
sin r

c
=

sin q

B
+

sin p

A

We divide Equation 2.2 and Equation 2.3 by BCa and CAb respectively to obtain

sin p

a
=

sin r

C
+

sin q

B
.

sin q

b
=

sin p

A
+

sin r

C
.
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We can now set A = αa, B = βb and C = γc. To avoid having to write out long and

confusing equations involving several variables, we set

(2.5)
sin p

A
=

sin p

αa
= P.

Similarly, we define Q and R as follows:

sin q

B
=

sin q

βb
= Q.

sin r

C
=

sin r

γc
= R.

Combining Equation 2.4 with Equation 2.5, we get

(2.6) γR = P +Q.

Analogously, αP = Q+R and βQ = R + P .

Taking the pairwise differences of these equations and rearranging, we get

P

R
=

γ + 1

α + 1
Q

P
=

α + 1

β + 1

R

Q
=

β + 1

γ + 1
.

From these equations, we get that

P : Q : R =
1

α + 1
:

1

β + 1
:

1

γ + 1
.

Thus, we have established a relationship between P,Q,R and α, β, γ. Combining Equation

2.6 and Equation 2.7 we have

P

Q
=

γ + 1

aγ − 1
.

Furthermore, since P
Q
= β+1

α+1
, we obtain

αβγ = α + β + γ + 2.

Now,

α =
AO

Oa
, β =

BO

Ob
, γ =

CO

Oc
.

Thus, replacing α, β and γ with their corresponding side ratios, we have established the

theorem. □
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Now that we have established a relationship between the ‘six parts’ of the cevians, we

return to the Triangle Construction problem. We retain the notation we introduced while

proving the previous theorem. Specifically, we have

A = αa,B = βb, C = γc

and

sin p = αaP, sin q = βbQ, sin r = γcR.

By the previous theorem, αβγ = α + β + γ + 2. Now, we use the ratio P : Q : R to set

P =
δ

α + 1
, Q =

δ

β + 1
, R =

δ

γ + 1
.

Here, δ is introduced to reduce the amount of variables we need to deal with later. Once we

find its value, we will have all the information we need about the angles and line segments

to construct the triangle. Until now, most of our expressions pertain to the sines of the

angles p, q and r, so it makes sense to work with these as we proceed. Again, we employ the

technique of introducing new variables to avoid clutter. We set

sin p = f, sin q = g, sin r = h.

Now, since we have sin r = sin(p+ q) = sin p cos q + cos p sin q and cos q =
√

1− (sin q)2 we

can write

h = f
√

1− g2 + g
√

1− f 2.

Squaring, we get

h2 = f 2 + g2 − 2f 2g2 + 2fg
√

(1− f 2)(1− g2).

Since we want to remove the radicals completely, we square again to get

(2.7) f 4 + g4 + h4 − 2f 2g2 − 2f 2h2 − 2g2h2 + 4f 2g2h2 = 0.

Since f = sin p, by Equation 2.5, we have

f = αaP =
αaδ

α + 1
.

Similarly, g =
βbδ

β + 1
, and h =

γcδ

γ + 1
. By another application of our favourite technique of

introducing new variables to simplify calculations, we set

(2.8)
αa

α + 1
= F,

βb

β + 1
= G,

γc

γ + 1
= H.
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This means that f = Fδ, g = Gδ, and h = Hδ. The advantage of doing this, as we shall

soon see, is that we can directly solve for δ. We have, by Equation 2.7,

δ4
(
F 4 +G4 +H4 − 2F 2G2 − 2F 2H2 − 2G2H2 + 4δ2F 2G2H2

)
= 0.

F 4 +G4 +H4 − 2F 2G2 − 2F 2H2 − 2G2H2 + 4δ2F 2G2H2 = 0.

Thus

δ2 =
2F 2G2 + 2F 2H2 + 2G2H2 − F 4 −G4 −H4

4F 2G2H2
.

Taking square roots and factoring,

δ =

√
(F +G+H)(F +G−H)(F +H −G)(G+H − F )

2FGH
.

This expression looks similar to another expression we are already familiar with. Heron’s

formula for the area M of a triangle with side lengths a1, a2, a3 assumes a similar form:

M =
√
s(s− a1)(s− a2)(s− a3)

where s =
a1 + a2 + a3

2
.

Considering a triangle with side lengths F , G and H, the area M of the triangle by Heron’s

formula and some algebraic manipulation that suits our purposes is

M =
1

4

√
(F +G+H)(F +G−H)(F +H −G)(G+H − F ).

This looks similar to the expression we obtained for δ. Comparing, we get

δ =
2M

FGH

Recall that F,G and H can be found using just the ‘six parts’ of our cevians (see Equation

2.8). Also, M , as the area of the triangle with sides F,G and H can naturally be computed

using just those values. Thus, δ can be computed using the information we have already

been presented with.

Recall that we had defined f, g and h as the sines of angles p, q and r respectively. Now,

since f =
αaδ

α + 1
, g =

βbδ

β + 1
, and h =

γcδ

γ + 1
, knowing the value for δ will give us the value for

the sines of the angles. Since we have the constraint p+ q+ r = 180◦, the sines of the angles

will give only a few possibilities for the measure of the angles. Notice also that knowing the

measure of one of the angles will give us the measure of the other two. Once we know the

angles, we can construct the triangles ∆BOc,∆cOA,∆AOb,∆bOC,∆COa and ∆aOb from

Figure 1 using the lengths we have been given. Thus, ∆ABC can be easily constructed.
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As Euler explored this problem, he noticed that Theorem 2.1 can be stated more elegantly

as follows.

Theorem 2.4. Consider the triangle ∆ABC and cevians Aa,Bb and Cc that coincide at O

(check Figure 1). Then, the following property always holds:

Oa

Aa
+

Ob

Bb
+

Oc

Cc
= 1.

Proof. Once again, we retain our original notation to set AO = α · Oa, BO = β · Ob, and

CO = γ ·OC. By Theorem 2.1, we have αβγ = α + β + γ + 2. We add

αβ + αγ + βγ + α + β + γ + 1

to both sides to get an expression that lends itself well to factorisation. Adding and factoring,

we get

(α + 1)(β + 1)(γ + 1) = (α + 1)(β + 1) + (α + 1)(γ + 1) + (β + 1)(γ + 1).

Dividing by (α + 1)(β + 1)(γ + 1) on both sides yields

1

γ + 1
+

1

β + 1
+

1

α + 1
= 1.

Notice that we had defined α, β and γ to be the ratios AO
Oa

, BO
Ob

and CO
Oc

respectively.

Substituting these values into our expression will yield the desired equality.

Further, since we have

γ + 1

γ + 1
+

β + 1

β + 1
+

α + 1

α + 1
= 3

we can take the difference of the two expressions to obtain

(2.9)
α

α + 1
+

β

β + 1
+

γ

γ + 1
= 2.

The above expression may prove to be more useful than its equivalent form in some cases.

□

3. An alternate proof and some extensions

Euler offered another, arguably simpler proof of the previous theorem that relies on the

clever addition of segments to our given triangle and then using properties of similar triangles.

Since our previous proof relied on long-winded algebraic techniques involving the introduction

of several new variables, we have included this proof here to simplify matters.
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Figure 2

We draw segments fζ, gη and hθ through O parallel to BC,AC and AB respectively. Using

the previous theorem, we have

Bf

AB
+

Aη

AB
+

fη

AB
= 1.

Now, since △Aba and △AfO are similar,

Bf

BA
=

Oa

Aa
.

The first fraction Bf
AB

can be represented as Oa
Aa

. Using the similarity relations △BAb ∼
△BηO and △fOη ∼ △BCA, we get the following

Aη

AB
=

Ob

Bb
fη

BA
=

fO

BC
.

Now, fO = Bθ, so, since △BCc ∼ △θCO, the fraction Bθ
BC

will be Oc
Cc
. the identity

Bf+Aη+fη
AB

= 1 assumes the form:

Oa

Aa
+

Ob

Bb
+

Oc

Cc
= 1,

Which is what we had set out to prove.

This property also holds when the point O is taken anywhere outside the triangle, as in

Figure 3. For this case, we set AO = A and Oa = a. Also, we have BO = b. Since O lies on

the boundary of the triangle and b lies in its interior, we set Ob = −b, contrary to our choice
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Figure 3

of Ob = b for the previous cases. Similarly, we have CO = C and Oc = −c. It is apparent

that

Aa = A+ a

Bb = B + b

Cc = −(C + c).

Therefore, since we always have

a

a+ A
+

b

b+B
+

c

c+ C
= 1,

for the lines drawn in Figure 3 we will have

Oa

Aa
− Ob

Bb
+

Oc

Cc
= 1.

The property
α

α + 1
+

β

β + 1
+

γ

γ + 1
= 2 (Check Equation 2.9) also helps us to find the

area of the whole triangle ABC. We have

[AOB] =
1

2
AB sin(p+ q) =

1

2
AB sin r.

Recall that we have sin r = CR, which yields

[AOB] =
1

2
ABCR.
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Similarly, we have [AOC] =
1

2
ABCQ and [BOC] =

1

2
ABCP . Now, since

[ABC] = [AOB] + [AOC] + [BOC] we have

[ABC] =
1

2
ABC(P +Q+R).

Retaining the notation from the previous sections, we make the following substitutions:

P =
Fδ

A
, Q =

Gδ

B
, R =

Hδ

C
.

Recall that we had F = A
α+1

, G = B
β+1

and C = C
γ+1

. Thus, the area of the triangle becomes

[ABC] =
1

2
ABCδ

(
1

α + 1
+

1

β + 1
+

1

γ + 1

)
.

From our previous work we know that
1

α + 1
+

1

β + 1
+

1

γ + 1
= 1 so that

[ABC] =
1

2
ABCδ

.

Now, since we had set the area of the triangle with sides F,G and H equal to M and found

that δ = 2M
FGH

, the area of our triangle ABC can be expressed as ABCM
FGH

.

By Equation 2.8 we can substitute the values of F,G and H in the expression for the area

of the triangle ABC to find that

[ABC] = (α + 1)(β + 1)(γ + 1)M.

Thus we have found an an easier way to derive the property in Theorem 2.4 and have

found a counterpart of the theorem for the case when the point O lies on the boundary of

the triangle. We also used our previous results to find a convenient expression for the area

of the triangle ABC for the case where the point O lies inside the triangle.

4. Ratio-sum theorem for Spherical Triangles

We now present a counterpart of the ratio-sum theorem for spherical triangles, where the

sum of the angles is greater than 180◦.

Definition 4.1. A spherical triangle is a figure formed on the surface of a sphere by three

great circular arcs intersecting pairwise in three vertices.

The results concerning triangles in the plane can be modified for spherical triangles. We

consider a spherical triangle ABC (Figure 4), in which arcs from each vertex are drawn to

the opposite sides so as to coincide at a point O. We find that the following relation holds



10 ANIKA CHOPRA AND SIDDH VORA

Figure 4

between the ‘six parts’ of the cevians, so that, given these values, we can construct the

triangle.

Theorem 4.2. If, in a spherical triangle ABC, arcs Aa, Bb, and Cc are drawn from each

vertex to its opposite side so as to coincide at a point O, and if we set

tanAO

tanOa
= α,

tanBO

tanOb
= β,

tanCO

tanOc
= γ,

then we will always have αβγ = α + β + γ + 2, which may be simplified as

1

α + 1
+

1

β + 1
+

1

γ + 1
= 1.

Remark 4.3. Note that this has the same form as Theorem 2.1.

Proof. Let the angles around the point of intersection be named as marked in the figure, and

also set arcs AO = A, BO = B, CO = C, Oa = a, Ob = b, Oc = c. For a spherical triangle

ABC with opposite sides a, b and c we have

tanA =
sin a sinC

cos a sin b− sin a cos b cosC
.

Thus, using the formula for the tangent of ∠AOc we get

tan∠AcO =
sinA sin q

cosA sin c− sinA cos c cos q
,

and in triangle BOc we will have
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tan∠BcO =
sinB sin p

cosB sin c− sinB cos c cos p
.

Now since these two angles when summed together make two right angles, the sum of their

tangents should equal zero. Adding the two equations, we have:

sinA cosB sin c sin q−sinA sinB cos c cos p sin q+sinB cosA sin c sin p−sinA sinB cos c cos q sin p = 0.

This can be reduced to:

sinA cosB sin c sin q + sinB cosA sin c sin p = sinA sinB cos c sin r,

from which we gather

sin r =
sinA cosB sin c sin q + sinB cosA sin c sin p

sinA sinB cos c
.

which in turn produces the following equation:

sin r

tan c
=

sin p

tanA
+

sin q

tanB
.

In the same way, we will have:

sin p

tan a
=

sin q

tanB
+

sin r

tanC
,

sin q

tan b
=

sin r

tanC
+

sin p

tanA
.

Moreover, since in the beginning we set

tanA

tan a
= α,

tanB

tan b
= β,

tanC

tan c
= γ,

when these values are substituted, we get:

sin r

tan c
=

sin p

α tan a
+

sin q

β tan b
,

sin p

tan a
=

sin q

β tan b
+

sin r

γ tan c
,

sin q

tan b
=

sin r

γ tan c
+

sin p

α tan a
.

Let us now further set

sin p

α tan a
= P,

sin q

β tan b
= Q,

sin r

γ tan c
= R.

Once this is done, our three equations will be
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γR = P +Q, αP = Q+R, βQ = R + P.

The first of these becomes R = P+Q
γ

, and the second becomes R = αP −Q. Setting them

equal, we get P
Q

= γ+1
αγ−1

Subtracting the third equation from the second gives αP − βQ =

Q− P , and we deduce that P
Q
= β+1

α+1
. Finally,

γ + 1

αγ − 1
=

β + 1

α + 1
,

Simplifying, we get the desired expression

αβγ = α + β + γ + 2.

Notice that the proof of the ratio-sum theorem for spherical triangles is very similar to the

proof of the theorem for planar triangles. We set our intermediate ratios equal to some P,Q

and R for the sake of brevity, and substitute the original values at the final stage to obtain

the desired expression.

□
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