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Abstract

Swiss mathematician and physicist, Leonhard Euler, used the Maclaurin series, or power series
to find his formula, Euler’s formula, which is eix = cos(x) + i · sin(x). This famous formula is
used to establish the relationship between trigonometric functions and the complex exponential
function. The complex exponential function has properties that make it a versatile tool in various
subjects, including mathematics, finance, engineering, and computer science.

1 Introduction

Leonhard Euler wrote a paper “Subsidium calculi sinuum,” or “A contribution to the calculations of
sines” where he focused on the sine function and how the trigonometry relates to the exponential
function.

The complex exponential function is a fundamental concept that extends the traditional exponential
function to the complex plane. It is represented as ez where e is Euler’s number, and z is a complex
number of the form a+ bi, where a and b are real numbers and i is a imaginary unit.

It is crucial to note that Euler’s Formula and DeMoiré’s Theorem are very similar in what they
both state. That (cos(ϕ) + i · sin(ϕ))n = cos(nϕ) + i · sin(nϕ). However, DeMoiré’s theorem was only
proved for all n ∈ N . For half a century after DeMoiré’s Theorem, no one was able to prove that the
formula would hold true for complex numbers.

2 Deriving DeMoiré’s Theorem

First, Euler derives DeMoiré’s Theorem in Lemma 1, by demonstrating the property with two angles,
ϕ and α. He continued to simplify the following expression:

(cos(Φ) + i · sin(Φ))(cos(α) + i · sin(α))

He multiplied the binomials by distributing each term:
= (cos(Φ) cos(α)) + (cos(Φ) i sin(α)) + (cos(α) i sin(ϕ)) + (i sin(Φ) i sin(α))

Since i =
√
−1 , therefore, i2 = −1, when simplified, the above becomes:

= (cos(Φ) cos(α)) + (cos(Φ) i sin(α)) + (cos(α) i sin(ϕ))− (sin(Φ) sin(α))

Now, once the i is factored out, the resulting expression is:
= (cos(Φ) cos(α)) + i(sin(Φ) cos(α)) + (cos(ϕ) i sin(α))− (sin(Φ) sin(α))

The terms were regrouped to form a familiar identity
= (cos(Φ) cos(α))− (sin(Φ) sin(α)) + i(sin(Φ) cos(α)) + (cos(Φ) sin(α))

Since cos(Φ + α) = (cos(Φ) cos(α))− (sin(Φ) sin(α)), the expression can be rewritten as:
cos(Φ + α) + i(sin(Φ) cos(α)) + (cos(Φ) sin(α))

Another familiar identity is the sum of sines. In other words, sin(Φ + α) = (sin(Φ) cos(α)) +
(cos(Φ) sin(α)). If we substitute this property into the equation, we get:
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cos(Φ + α) + i(sin(Φ + α))

Following this, Euler analyzed the case that α = Φ. The equation becomes:
((cos(Φ) + i(sin(Φ))2 = cos(2Φ) + i sin(2Φ)

If cos(2Φ) + i sin(2Φ) is multiplied by cos(Φ) + i sin(Φ), the new equation is:
((cos(Φ) + i(sin(Φ))2 = (cos(2Φ) + i sin(2Φ))(cos(Φ) + i sin(Φ)) = cos(3Φ) + i sin(3Φ)
Euler sets (cos(Φ)) + i(sin(Φ)) = u and v is the conjugate of u. Therefore, (cos(Φ)) − i(sin(Φ)) = v.
Based on Lemma 1:

un = (cos(nΦ)) + i(sin(nΦ))
vn = (cos(nΦ))− i(sin(nΦ))

The sum of un and vn is:
un + vn = cos(nΦ) + i sin(nΦ) + cos(nΦ)− i(sin(nΦ)) = 2 cos(nΦ)

The difference of vn from un is:
un − vn = cos(nΦ) + i sin(nΦ)− cos(nΦ) + i(sin(nΦ)) = 2i sin(nΦ)

Furthermore, it can also be agreed that uv = 1 since:
uv = (cos(Φ) + i sin(Φ))(cos(Φ) + i sin(Φ)) = cos2(Φ)− i sin(Φ) cos(Φ) + i sin(Φ) cos(Φ)− i2 sin2(Φ) =
cos2(Φ) + sin2(Φ)

Due to the Pythagorean Identity, cos2(Φ) + sin2(Φ) = 1. Therefore, uv = 1

Next, Euler wanted to convert the power of the cosine of some angle, Φ, so that no two or more
cosines are multiplied by each other. To do this, he took cos(Φ)n. Let u = cos(Φ) + i sin(Φ) and

v = cos(Φ)i sin(Φ). Therefore u+ v = 2 cos(Φ), so cos(Φ) = (u+v)
2 , and cosn(Φ) = (u+v)n

2n .
= 2n cosn(Φ) = (u+ v)n

Next, the right hand side of the equation undergoes binomial expansion. That expands to:

= (u+ v)n =
(
n
0

)
unv0 +

(
n
1

)
un−1v1 +

(
n
2

)
un−2v2 +

(
n
3

)
un−3v3 + . . . = un + nun−1v + n(n−1)

1·2 un−2v2 +
n(n−1)(n−2)

1·2·3 un−3v3 + ...
When the order of of u and v are switched, the left side remains the same, and the order of the

terms on the right side are switched as well. The new equation becomes:

= 2n+1 cosn(Φ) = un + vn + n(un−2 + vn−2)uv + n(n−1)
1·2 (un−4 + vn−4)un−2v2 + ...

Seeing that as uv = 1, if both sides are divided by 2, the equation becomes:

= 2n cosn(Φ) = 1
2 (u

n + vn) + n
2 (u

n−2 + vn−2)uv + n(n−1)
1·2·2 (un−4 + vn−4)un−2v2 + ...

Substituting the occurrences of un + vn with 2 cos(nΦ) gives the equation:

= 2n cosn(Φ) = 1
2 (2 cos(nΦ)) + n(cos((n− 2)Φ)) + n(n−1)

1·2 (cos((n− 4)Φ)) + ...
It is important to observe that:

cos((n−m)Φ) = cos((m− n)Φ)

3 Euler’s Complex Exponential Function

3.1 Proving the Complex Exponential Function Using a Taylor Series

The formula for Euler’s Complex Exponential Function states: eiΦ = cos(Φ)+ i sin(Φ). Where e is the
base of the natural logarithm. To prove this formula, we need to find the Taylor series expansions for
the exponential , cosine, and sine functions.
A Taylor series is usually used to approximate functions with polynomials. Generally, the formula for
a Taylor series expansion for a function f(x) that is centered at (a, f(a)) is f(x) = f(a) + f ′(a)(x −
a) + f ′′(a)

2! (x− a)2 + f ′′′(a)
3! (x− a)3 + . . .

For the exponential function, the Taylor series expansion is: ex =
∑∞

k=0
xk

k! = e0 + e0x + e0

2! x
2 +

e0

3! x
3 + · · · = 1 + x+ x2

2! +
x3

3! + . . .
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The Taylor series expansion of the cos(x) function centered at a = 0, and with a derivative evaluated

at x = 0 is: cos(x) =
∑∞

k=0(−1)k x2k

(2k)! = cos(0)−sin(0)x− cos(0)
2! x2+ sin(0)

3! x3+· · · = 1− x2

2! +
x4

4! −
x6

6! +. . .

Additionally, when the sin(x) function that is centered at a = 0, and with a derivative evaluated at

x = 0 goes through a Taylor series expansion, the result is: sin(x) =
∑∞

k=0(−1)k x2k+1

(2k+1)! = sin(0) +

cos(0)x− sin(0)
2! x2 − cos(0)

3! x3 + · · · = x− x3

3! +
x5

5! −
x7

7! + . . .
Now that the Taylor expansions of the required functions are known, the substitution of the func-

tions with the expansions can be made.

eix = 1 + ix+ (ix)2

2! + (ix)3

3! + (ix)4

4! + . . .
After the powers of i are simplified and the common terms are factored out of the equation, the

resulting equation is:

eix = 1 + ix− x2

2! −
ix3

3! + x4

4! +
ix5

5! − . . .
When the imaginary and real parts of the series are separated the equation is:

eix =
(
1− x2

2! +
x4

4! −
x6

6! + . . .
)
+ i

(
x− x3

3! +
x5

5! −
x7

7! + . . .
)
When adding the expansions of the

cos(x) and i sin(x) functions, the resulting equation is:

cos(x) + i sin(x) = 1 + ix− x2

2! − ix
3

3! +
x4

4! − . . .

3.2 Justifying the Complex Exponential Function Using Derivatives

Let the function, f(x) = cos(x) + i sin(x). After taking the derivative of this function, the result is:

f ′(x) = −i sin(x)+cos(x). As we can see, f ′(x)
f(x) = i. In other words, this function has the property that

it’s derivative is i times the function itself. This means dg
dx = ig. To solve this differential equation, a

convenient method is through the separation of variables. 1
gdg = idx. Integrating both sides gives us:∫

1
gdg =

∫
idx

= ln|g| = ix
= ln|g| = ix
= |g| = eix + C = eCeix

If we let eC be equal to some variable C2, then:
|g| = C2e

ix

Therefore, g = C3e
ix. Now, we must find the value of constant C3 that will make f(x) = g(x). Let

x = 0. We get the following:
= f(x) = cos(0) + i sin(0) = 1
= g(x) = C3e

i0 = C3

Hence, these two functions are equal when C3 = 1
Therefore, cos(x) + i sin(x) = eix.

3.3 Exponential Form

Additionally, we can also write that a complex number z = reiθ where r is the radius of the circle.
This representation describes complex numbers as exponential functions by providing information
about both their magnitude, r, and their phase, θ.

3.4 Geometrical Representation

Euler’s formula provides a means to express any given complex number z as eix , positioning it on a
unit circle characterized by its real component cos(x) and imaginary component i sin(x). Within this
framework, operations like determining the roots of unity can be visualized as rotational movements
along the circumference of the unit circle. The point eix traces out a unit circle in the complex plane
as x varies.
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3.5 Euler’s Famous Identity

Also known as the most beautiful equation in mathematics, Euler’s famous identity stems from the
special case of Φ = π. Since eiπ = −1, by adding 1 to both sides, the resulting equation is eiπ +1 = 0.
This important equation allows mathematicians to relate the four numbers, e, π, i, and 0. Using Taylor
series, we proved this formula by breaking down the formula into which infinitely many terms.

4 Roots of Unity

Roots of unity are complex numbers that, when raised to certain powers, equal 1. These special
numbers lie on the unit circle in the complex plane, where the unit circle is a circle centered at the
origin with a radius of 1. The nth roots of unity are equally spaced around the unit circle, with each
root separated by an angle of 2π

n radians. The formal definition of the nth root of unity is: for any
positive integer n, the nth roots of unity are the complex solutions to the equation xn = 1 and there
are n solutions to the equation. Euler’s formula can be used to find the nth roots of unity for any

positive integer n. We can say Un =
{
e

2kπi
n

∣∣∣ k ∈ {1, 2, . . . , n}
}

where Un represents the set of all nth

roots of unity. These roots of unity are often written in polar form as e
2kπi
n , where k is the set of

natural numbers until n.
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