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1 Introduction

This paper discusses the development of Lagrange’s four square theorem as well
as Euler’s importance towards influencing this through the four square identity
and related theorems. The paper also includes the extension of Euler’s work
into modern day usage and identities in matrices in real life. In this paper, the
works of modern mathematicians’ extension of Euler’s and Lagrange’s work are
discussed, with reference to papers [Eul08], [LG18], [Leh48], [PF09]

2 Euler’s four square identity

Theorem 1. This is one of the key identities that Lagrange used in proving the
four square theorem. The theorem is as follows:

XY = (a21 + a22 + a23 + a24)(b
2
1 + b22 + b23 + b24), X, Y ∈ Z.

Proof. The proof begins as follows. First, the values of α and β are assigned.

α = a1 + a2i+ a3j + a4k

β = b1 + b2i+ b3j + b4k.

He then uses the quaternion conjugate of this pair of quaternions. A quaternion
is essentially a 4 dimensional vector as written above, with a constant term,
and i, j, k vector directions. The quaternion conjugate of α and β are α∗ and
β∗ respectively where they follow the general rule of conjugates. Thus we have

α∗ = a1 − a2i− a3j − a4k

β∗ = b1 − b2i− b3j − b4k
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Using the definition of conjugates, the computation of αα∗ and ββ∗ is a21+a22+
a23 + a24 and b21 + b22 + b23 + b24 respectively.

Let’s assign αα∗ and ββ∗ to X and Y respectively. Thus we get:

XY = αα∗ββ∗

Due to the associative property of quaternions, as 4 dimensional vectors, the
following equation is derived

XY = αβ(αβ)∗

Using the substitution γ = αβ, gives: XY = γγ∗

γ = (a1 + ⟨a2, a3, a4⟩)(b1 + ⟨b2, b3, b4⟩)

Using Hamilton product, the following can be observed:

γ = (a1b1 − a2b2 − a3b3 − a4b4) + (a1b2 + a2b1 + a3b4 − a4b3)i+

(a1b3 − a2b4 + a3b1 + a4b2)j + (a1b4 + a2b3 − a3b2 + a4b1)k

γ∗ = (a1b1 − a2b2 − a3b3 − a4b4)− (a1b2 + a2b1 + a3b4 − a4b3)i−
(a1b3 − a2b4 + a3b1 + a4b2)j − (a1b4 + a2b3 − a3b2 + a4b1)k

Thus, since XY = γγ∗, the equation below follows:

XY = (a1b1 − a2b2 − a3b3 − a4b4)
2 + (a1b2 + a2b1 + a3b4 − a4b3)

2+

(a1b3 − a2b4 + a3b1 + a4b2)
2 + (a1b4 + a2b3 − a3b2 + a4b1)

2

Thus the equation below has been proved:

(a21 + a22 + a23 + a24)(b
2
1 + b22 + b23 + b24) = (a1b1 − a2b2 − a3b3 − a4b4)

2

+(a1b2+a2b1+a3b4−a4b3)
2+(a1b3−a2b4+a3b1+a4b2)

2+(a1b4+a2b3−a3b2+a4b1)
2

3 Extension of Euler’s four square identity to
Lagrange’s four square theorem

Lagrange’s four square theorem proves that any positive integer can be written
as the sum of four square numbers. This can be done building upon Euler’s
identity. First Lagrange explored the fact that all prime numbers can be writ-
ten as the sum of four squares. This was done by using the pigeonhole theorem
and modular arithmetic as follows:
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3.1 Case 1: Proof for Composite numbers

It starts as follows:

Theorem 2. mp = a2 + b2 + c2 + d2

Proof. Since p is odd, p−1
2 is an integer, and there are p+1

2 integers between 0

and p−1
2 inclusive.

Choose any arbitrary number fp from this range and let’s say f2
p ≡ rp (modp)

For sake of contradiction assume: that for two distinct integers ai and aj in
the range 0 to (p−1

2 , their square has the same remainder rp when divided by p.
We get:

a2i − a2j = (qi − qj)p

This means p is a divisor of (ai − aj)(ai + aj)
By Euclid’s lemma for prime factors, p|(ai − aj) or p|(ai + aj). But since ai
and aj are both less than p−1

2 , ai + aj is at max p − 1 and thus it can not be
divisible by p, thus giving us a contradiction. Hence the above is impossible.
∀ri, si = p− (ri + 1)
Thus we have p+1

2 positive distinct integers si such that 0 < si < p− 1

But some ri and si must be the same using pigeonhole principle, as there are
p+1
2 of ri and

p+1
2 of si, thus giving p+1 possible values of ri and si all of which

are in the range 0 < ri < p− 1 and 0 < si < p− 1, thus at least ⌈n+1
n−1⌉ = 2 of

them have to be the same.
So let’s choose the case where r = s

By construction we have 0 < a, b < p−1
2

a2 = q1p+ r

b2 = q2p+ r′

s = p− (r′ + 1)

Adding these together gives

a2 + b2 + s = q1p+ r + q2p+ p− 1

But since r=s, we get for a particular r and s,

a2 + b2 = q1p+ q2p+ p− 1

a2 + b2 + 1 = p(q1 + q2) = p(m),m = q1 + q2,m ∈ Z
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Thus mp = a2 + b2 + 12 + 02 and is the sum of four squares

This satisfies only when m is not equal to 1, i.e all composite numbers. Thus
we must now prove the case for prime numbers to complete the proof.

3.2 Case 2: Proof for Prime numbers

Since we have established that all composite numbers of form mp, where m is
not equal to 1, are the sum of 4 squares all that is left to do is prove that primes
are the sum of four squares.

From the previous part, we have the following equation:

mp = x2
1 + x2

2 + x2
3 + x2
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Theorem 3. Let’s assume for sake of contradiction that m is an even number.
In this case we have:

m

2
p = (

x1 + x2

2
)2 + (

x1 − x2

2
)2 + (

x3 + x4

2
)2 + (

x3 − x4

2
)2

Proof. As we know that the parity of a number and its square are the same,
this means that there must be an even number of numbers x1 through x4 that
must have even parity (i.e 0,2 or 4 of them must be even). When either all of
them are even (4 even) or all of them are odd (0 even), then the pairs x1 + x2,
x1 − x2, x3 + x4, x3 − x4, are all even and thus the sum must be even. In the
case where 2 are even and 2 are odd, if the pairs are such that x1 and x2 are
of same parity and x3 and x4 are of same parity, then once again we end up
with a desired result. But if they are not, then the problem arises that mp

2 is

not even, as all numbers are of form 2k+1
4 , k ∈ Z. This does not work, as mp is

not an integer in this case. Thus, since we want mp
2 even for contradiction, the

only cases which are allowed are listed above. But the contradiction follows that
m > m

2 and thus m is not the smallest number, such that mp can be written as
sum of four squares.

Thus, by contradiction m must be odd. Now let’s assume once again for
sake of contradiction that is m > 1.

Once again, we have:

m

2
p = (

x1 + x2

2
)2 + (

x1 − x2

2
)2 + (

x3 + x4

2
)2 + (

x3 − x4

2
)2

Divide each xi by m, to obtain a remainder ri, such that 0 <= ri <= m−1.
Thus we define yi as follows:

yi = ri : 0 <= ri <=
m− 1

2

yi = ri −m :
m+ 1

2
<= ri <= m− 1
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Thus, we get xi = qim + yi, where −m−1
2 <= yi <= m−1

2 . Thus we have
yi = xi − qim.

y21 + y22 + y23 + y24 = x2
1 + x2

2 + x2
3 + x2

4 − 2m(x1q1 + x2q2 + x3q3 + x4q4) +m2(q21 + q22 + q23 + q24) = mn

,where n ∈ Z.

Thus assume for contradiction n = 0: but this means that all y’s are zero and
x’s are divisible by m, but that means m|p, but this is impossible, as 1 < m < p.
Thus n is not equal to zero.

Thus we get the following equation:

mn = y21 + y22 + y23 + y24 < 4(
m

2
)2 = m2

Using the equation for mp, and mn, we get:

m2np = (y21 + y22 + y23 + y24)(x
2
1 + x2

2 + x2
3 + x2

4)

Using Euler’s four square identity, we get:

m2np = (x1y1 + x2y2 + x3y3 + x4y4)
2 + (x1y2 − x2y1 − x3y4 + x4y3)

2

+ (x1y3 + x2y4 − x3y1 − x4y2)
2 + (x1y4 − x2y3 + x3y2 − x4y1)

2.

Each of these numbers are all multiples of m, as can be seen by some manipu-
lation using the definition of qi. Thus we get:

m2np = (mz3)
2 + (mz3)

2 + (mz3)
2 + (mz3)

2

Thus we get the following when dividing by m2

np = z21 + z22 + z23 + z24

, where 1 <= n < m, but this contradict the minimality of m, as n satisfies the
equation as well. Thus we must have m = 1, and p can be expressed as the sum
of 4 squares.

4 Prime numbers and four squares

Lagrange goes on to further prove that if 2 sums of 2 squares: (i.e p2 + q2 and
r2+ s2 share a common factor, δ, which is not a divisor of any of the individual

squares, then δ, p2+q2

δ , and r2+s2

δ can also be written as sum of four squares.

Theorem 4. The proposition thus follows that if p2 + q2 + r2 + s2 = ab, then
a and b themselves can be written as the sum of four squares.

Euler shows the proof in the paper:

He splits into two cases:
1. Case where p2 + q2 and r2 + s2 have a common factor δ
2. Case where p2 + q2 and r2 + s2 do not have a common factor
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4.1 Defining example

An example of this case is to take p = 2, q = 4 and r = 6, q = 8.

p2 + q2 = 20
r2 + s2 = 80
In this case we have a common factor δ = 20.

AB =
p2 + q2

δ
+

r2 + s2

δ

In this case, since we know that all numbers can be written as the sum of four
squares, this means that we must have 80/20 and 20/20 written as the sum of
four squares.
4 = 22 + 02 + 02 + 02

1 = 12 + 02 + 02 + 02

As seen above by the motivating example, and Lagrange’s lemma, we can now
write this as follows:

4.2 Manipulation of Lagrange’s four square theorem

ac = P 2 +Q2 + R2 + S2, where c = bδ, and GCD (P,Q,R, S) = 1, as δ is the
largest factor.

Let’s say P 2 +Q2 = t , R2 + S2 = u. Then act = t2 + tu.

act = t2 + (PR+QS)2 + (PS +QR)2 = t2 + x2 + y2

Since we have a factor of t on L.H.S, we must have a factor of c and t on each
of the terms on R.H.S. Thus we can express x = αt+ γc and y = βt+ δc.

This results in the expression as below for act.

act = t2(1 + α2 + β2) + 2ct(αγ + βδ) + c2(γ2 + δ2)

We must thus have t2(1 + α2 + β2) = cx. Thus let’s assume that cα′ = (1 +
α2 + β2).

Then we get the following equation:

at = a′t2 + 2t(αγ + βδ) + c(γ2 + δ2)

Thus we get multiplying by a′:

aa′t = (a′t)2 + 2a′t(αγ + βδ) + a′c(γ2 + δ2)

Replacing a′c = 1 + α2 + β2 gives us:

aa′t = (a′t)2 + 2a′t(αγ + βδ) + (α2 + β2)(γ2 + δ2) + γ2 + δ2
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aa′t = (a′t+ αγ + βδ)2 + (βγ − αδ)2 + γ2 + δ2

Dividing by t, we get the following, where γ2+δ2

t = (r′)2 + (s′)2 and
(a′t+αγ+βδ)2+(βγ−αδ)2

t = (p′)2 + (q′)2

Thus we get aa′ = p′2 + q′2 + r′2 + s′2

5 Proof of Theorem 1 about sum of 2 squares
and divisor

Theorem 5. If a number N is a divisor of a sum of two squares P 2+Q2 which
are prime to each other, then that number N will itself be a sum of two squares.

Euler approaches this through the following lens, as seen in [Eul08]:
Let us choose 2 arbitrary numbers P and Q. Upon inspection, we see that the
number N , is such that it can itself be expressed as the sums of two squares,
a2 + b2, however, we note that neither root can be greater than N/2.

We take P = fN ± p and Q = gN ± q

P 2 +Q2 = N2(f2 + g2) + 2N(±fp± gq) + p2 + q2

Since we know that N is a divisor of P 2+Q2, this means that p2+ q2 = Nn,
for some positive integer n.

Using the fact that p < N/2 and q < N/2,then n < N/2. One can then
substitute values for p and q, as we did before for P and Q. Thus we get, the
following:

p = a+ αn

q = b+ βn

Using this substitution, we get:

Nn = (a+ αn)2 + (b+ βn)2

Nn = a2 + b2 + n2(α2 + β2) + 2n(aα+ bβ)

Using Diophantus and Fermat’s theorem on sum of two square we get

Nn = a2 + b2 + n2(α2 + β2) + 2nA

and since we know that N is an integer, we get a2 + b2 = nn′.

Thus we have the following equation when substituting and dividing by n:

N = n′ + 2A+ n(α2 + β2)
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Finally multiplying by n′, we get the following equation using the lemma by
Fermat:

Nn′ = n′2 + 2n′A+A2 +B2 = (n′ +A)2 +B2

Thus we have proved that if a number N is a divisor of a sum of two squares,
then it is a sum of 2 squares itself. An example of this is taking N as 5, and
P 2 +Q2 = 25. N = 12 + 22.

This has therefore helped us to come to a more important realisation: every
multiple of a number which cannot be expressed as the sum of 2 square num-
bers (i.e 3) cannot be the sum of 2 squares. Linking to Euler’s previous work
on which numbers can be expressed as the sum of 2 squares, this is quite inter-
esting. We see that prime numbers of form 4n+3 cannot be written as the sum
of two squares, whereas prime numbers of form 4n+1 can be written as sum of
two squares. From Euler’s proof, we see that numbers of form k(4n+3), where
4n+ 3 is prime cannot be the sum of two squares.

6 Proof of Theorem 2 regarding prime numbers
and squares

Theorem 6. Given any prime number N , not only four squares but even in
fact three squares can be exhibited in infinitely many ways whose sum is divisible
by this number N , but no single one can be divided by it.

Proof. We see that all numbers x are of form x ≡ a (modN), where a is an
integer between 0 and N − 1. Thus x = λn+ a.

We also notice that the squares of these numbers can be represented in the
forms of λn + b, where b is a square of an integer between 0 and (N − 1)/2.
These are called forms of first class.

If b exceeds n itself, then we have forms of second class represented by λn+ c,
where c is the residue when divided by n.

Product of two numbers in the first class gives us numbers of form: λn+ b1b2

Product of two numbers one the first class and one in the second class gives
us numbers of form: λn+ b1c1, which is another number in the second class.

Product of two numbers in the second class gives us numbers of form: λn+c1c2,
which is a number in the first class.

If sum of three squares were not to be divisible by N , then any two squares
would also have sum not be a multiple of N , otherwise we can just add 0, and
get the desired result. This means that numbers of for, λN + a and λN − a,
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cannot be in the same class. This means that without loss of generality, we can
assume the numbers in second class are of form λN − a, such that c1, c2, ... are
comprised of -1, -4, -9, -16, -25, .... .

Let f be any number of the form class, so that a square of the form λN + f
is given; if squares of the form λ + 1 are added to this, λN + f + 1 will be a
sum of two squares. Now if a square of the form λN − f − 1 were given, we
would obtain a sum of square squares that was divisible by N; since this is false,
the form λN − f − 1 will not be in the first class and will this be contained in
the latter. However, since the numbers -1 and −f − 1 are there, it is necessary
that their product f + 1 occurs in the first class. It can be shown in a similar
way that the numbers f +2, f +3, f +4 also exist in the first class, and taking
f = 1, gives λN + 1, λN + 2, ... all exist in the first class, whilst -1, −λN − 1,
−λN − 2, ... all exist in the second class.

Thus using the above lemmas of multiplication of two numbers in first class
and second class, we see that the sum of three squares or four squares have
many forms in the first and second class.

7 Partitioning numbers into squares

Similar to Ramanujan and Euler’s method of calculating partitions of numbers,
there is an analogous partition of numbers into squares, Jacobi theorised the
following, see [Leh48]:

Theorem 7. The number of representations of n as the sum of 4 squares

R4(n) = 8(2 +−1n)(σ0(n))

where σ0(n) is the sum of odd divisors of n.

7.1 Defining Example

R4(98) = 8(2 + 1)(1 + 7 + 49) = 1368, but we know that P4(n) = 7, namely as
listed below:

98 = 02 + 02 + 72 + 72

98 = 02 + 12 + 42 + 92

98 = 22 + 22 + 32 + 92

98 = 02 + 32 + 52 + 82

98 = 22 + 32 + 62 + 72

98 = 12 + 52 + 62 + 62

98 = 32 + 32 + 42 + 82
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7.2 Explanation behind the discrepancy shown in the ex-
ample

This discrepancy is due to the difference in terms of the description of repre-
sentations and partitions of numbers. Understanding the relationship between
these numbers can be put down to the fact that there are 11 different types of
ways a number can be the sum of at most 4 squares, and using these types, they
are assigned a value. Essentially, this can be explained as follows:

I : a2+b2+c2+d2, has 384 representations due to the fact that a2 = (−a)2, and
order does matter in a representation, thus we can use simple combinatorics to
see that a can be any of 8 values, b can be any of 6 values, c can be any of 4
values, and d can be any of 2 values.

Similarly, we can identify that the number of representation of a different type
can be determined by the combinatorics of arranging them. Using this, we can
get that the 7 partitions have 1368 representations.

As of date, there is still no sure way to calculate the number of partitions
of a number into 4 squares, but there are ways of calculating approximations
for numbers of special formats.

7.3 Approximations of partitions in specific cases

For example, we clearly see that R4(n)
384 <= P4(n) <= R4(n)

8 , because the maxi-
mum number of representations for any type of partition is 384, and the mini-
mum number of representations for any partition is 8.

Since we don’t know a formula for σ0(n), for even numbers n = 2k, we can
only say that for n = 2k + 1, σ(n) = σ0(n), and thus we get the following
equation:

σ(2k + 1) >= P4(2k + 1) >=
σ(2k + 1)

48

Further work has been done in this field to approximate partitions of numbers
into 3 squares and 4 squaes and as in the next part we will see the importance
of this in modern applications of cryptography.
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8 Application of Lagrange’s four square theo-
rem and Euler’s four square identity into cryp-
tography

This paper [PF09] discusses the importance of Euler’s and Lagrange’s work to
modern aspects of cryptography. Thus, in this section the discussion regards
the algorithm used and the importance of these formula and proofs on reducing
computation for users decrypting. We see that the Lagrange four square theorem
as well as the Euler four square identity are used in cryptography, as a trapdoor
in the initialization of RSA prime numbers. A trapdoor of an RSA algorithm is
a secret door which requires significantly less computation for the user to know
how to decrypt a message once given the particular algorithm. Since we want to
factorise n into prime factors p and q, we use Lagrange’s four square theorem,
we have:

p = x2
1 + x2

2 + x2
3 + x2

4

q = y21 + y22 + y23 + y24

n = a2 + b2 + c2 + d2

Thus we have:

a2 + b2 + c2 + d2 = (x2
1 + x2

2 + x2
3 + x2

4)(y
2
1 + y22 + y23 + y24)

Using Euler’s four square identity, we get the following values for a, b, c, d:

a = x1y1 − x2y2 − x3y3 − x4y4

b = x1y2 + x2y1 + x3y4 − x4y3

c = x1y3 − x2y4 + x3y1 + x4y2

d = x1y4 + x2y3 − x3y2 + x4y1

Using this a base is set to determine the bounds or maximum values of x1, x2

and y1.
We also use the approximation of number of partitions of a number into

3 squares to find the approximate number of tries required for decrypting a
password, given the Lagrange four square theorem backdoor. Assuming we
have 0 <= y1 <= 100, then using the formula for partitions p is approximated
as p− 1002, and thus we only need to try 200π

√
p representations compared to

without knowing, if number of prime numbers less than n is denoted by p(n) we
would need to try 2p(n).

9 Summary

Euler’s work on the partitioning of numbers into four squares as well as other
ways of partitioning numbers into the sums of squares has been very influential in
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mathematics, especially in some fields of cryptography. These interesting proofs
have led researchers to extend this to exploring 4D vectors and the geometric
analogies of square numbers by finding the magnitude of these vectors and their
relation to the Lagrange four square theorem, as can be seen here [LG18]
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