
THE MANDELBROT SET
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The Mandelbrot set is a very famous set, named after mathematician and computer sci-
entist Bernoit Mandelbrot. Its popularity is in part due to its aesthetic appeal once graphed
upon the complex plane. Simply, it can be defined as the set M such that for c ∈ M , the
iterates f(0), f(f(0)), f(f(f(0))), . . . where f(z) = z2 + c. This paper is largely based on
the work of [Dev89a].

Figure 1. The points within the Mandelbrot Set plotted on the Complex Plane

1. Definitions

Definition 1. Let F : C→ C. The point x0 is a fixed point for F if F (x0) = x0. The point
x0 is a periodic point of period n for F if F n(x0) = x0 but F i(x0) 6= x0 for 0 < i < n. The
point x0 is eventually periodic if F n(x0) = F n+m(x0), but x0 itself is not periodic.

Definition 2. For a polynomial P the sequence

z0, z1 = P (z0), . . . , zn+1 = P (zn), . . .

is called the orbit of z0 under iteration.

Notation. The concatenation of P (P (. . . (x)) . . . ) k times is written as P ◦k(x), e.g. P (P (3)) =
P ◦2(3).
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Definition 3. For a periodic point z0 of period k, the multiplier ρ is defined as the derivative
of P ◦k at z0. Via the chain rule, this gives

ρ = (P ◦k)′(z0) =
k−1∏
j=0

P ′(zj),

so that the derivative of P ◦k is the same at all points of the cycle.

2. Periodicity

We call a cycle attracting if |ρ| < 1, superattracting if ρ = 0, repelling if |ρ| > 1, and
neutral if |p| = 1. Note that a cyce is superattracting if and only if a critical point belongs
to the cycle. The behavior of each type of cycle can be observed with the Taylor expansion
of P ◦k about z0:

P ◦k(z0 + u) = z0 + ρu+ . . . .

Evidently, if |ρ| < 1 and z is sufficiently close to z0 then P ◦k is closer to z0 than z, P ◦2k is
even closer, and this process continues. Therefore an attracting cycle pulls points in near a
relative basin to z0. Similarly, if |ρ| > 1 and z is sufficiently close to z0 then the iterate P ◦k is
further away from z0 than z. It is aptly named a repelling cycle. We can now begin a closer
discussion of the polynomial Pc(z) = z2 + c, which is, of course, the quadratic we are mostly
focused on for the Mandelbrot set. A critical point ω is defined such that P ′(ω) = 0, or that
ω = 0 in this instance. The parameter value c is known as the critical value, or Pc(0). The
fixed points of Pc, given by the roots of z2 + c = z are

z = (1±
√

1− 4c)/2

with multiplier

ρ = 1±
√

1− 4c.

These calculations can be easily verified. The periodic points of period 2 are the solutions
to the equation PcPc(z) = z, or (z2 + c)2 + c = z. The roots of this equation which are not
fixed points are

z = (−1±
√
−3− 4c).

The corresponding multiplier is given simply by ρ = 4(1 + c). A relevant theorem whose
proof can be found in [Bro65] is the following:

Theorem 4 (P. Fatou). Every attracting cycle for a polynomial attracts at least one critical
point.

A polynomial of degree d ≥ 2 can therefore have at most d − 1 attracting cycles in the
plane. The polynomial Pc therefore can have at most one attracting cycle. This fact will be
used later in this paper.

3. The main cardioid

The main cardioid of the Mandelbrot Set is the most visually apparent feature of the
fractal, and in fact it turns out to be very easy to see why it occurs. We turn our focus
strictly to the fixed points of Pc, i.e. those with multiplier

ρ = 1±
√

1− 4c.
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We arrange to solve for c in the abbreviated steps:

ρ = 1±
√

1− 4c

ρ− 1 = ±
√

1− 4c

(ρ− 1)2 = 1− 4c

−ρ2 + 2ρ = 4c

c = ρ/2− (ρ/2)2.

The unit circle ρ = e2πit for t ∈ R/Z in the ρ-plane correspond to

e2πit/2− (e2πit/2)2

in the c-plane. This parameterized figure turns out to indeed be the big cardioid seen in
Figure 1. The subset W0 is the subset of M bounded by this cardioid. W0 is an example
of a hyperbolic component, a topic that will be further analyzed in the next section. An
equivalent definition of W0 is that W0 = {c ∈ C|Pc has an attracting fixed point}.

4. Hyperbolic components

Theorem 1 states that any c-value for which there exists an attracting cycle is contained
in M . Let H(M) = {c ∈ C|Pc has an attracting cycle}. Recall that the attracting cycle is
unique. A connected component W of H(M) is called a hyperbolic component of M . A
conjecture that has been dubbed possibly ”the most important open problem in the field of
complex dynamics” the following:

Conjecture 5 (The hyperbolicity conjecture for polynomials in degree 2). The set of c-
values for which Pc is hyperbolic is C. Equivalently that H(M) equals the interior of M :
int(M) = H(M).

Under our definition of a hyperbolic component, it is clear that the main cardioid also
must be a hyperbolic component. We begin finding more by considering the subsets of
M for which Pc has an attracting fixed point or an attracting cycle of period 2. We let
W 1

2
= {c ∈ C|Pc has an attracting cycle of period 2}. Similar to the situation with the

main cardioid, it turns out this is not so hard to find out. Recalling that the multiplier for
the periodic points of period 2 is ρ = 4(1 + c), we solve for c to get c = ρ/4 − 1. We then
replace ρ for the unit circle in the ρ-plane, yielding c = 1

4
e2πit − 1. This immediately tells

us that W 1
2

is an open disc centered at c = −1 with radius 1
4
. Referring back to Figure

1, we can verify that there is, in fact, a disk just to the left of the main cardioid. The
closure of W0 and W 1

2
share the point {−3/4} in common. {−3/4} is known here as the

period doubling bifurcation point, or where c changes from the disc to the main cardioid. It
is shown in [Yoc86] that for each p

q
where p and q are coprime that there is a hyperbolic

component W p
q

satisfying

W p
q
∩W0 = c

where c is a period q-doubling bifurcation point. This is when c changes from being inside
the big cardioid to inside the hyperbolic component W p

q
, then undergoes a cycle of period

q changes from being repelling to attracting after some ac changes from being attracting to
repelling. The set M∗

p
q

= the connected component of M −W0 containing W p
q
. The limb M p

q

is the intersection of M∗
p
q

and c.
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Figure 2. The Mandelbrot Set with labeled hyperbolic components

5. Chaos Theory

This paper ends with a short discussion on chaos theory, and a family of quadratics highly
related to the Mandelbrot Set. Consider now the function Fc(x) = x2 + c. When c > 1

4
this

is relatively uninteresting as there are no fixed points. For c = 1
4
, f has a fixed point at

x = 1
2
. An interesting phenomena occurs as c tends to decrease. Labeling the fixed points

p+ and p− for the larger and smaller ones, respectively, for −3/4 < c < 1/4 and p− < x < p+
we determine F ◦nc → p−. However if |x| > p+, then F ◦nc (x)→∞. This means that one fixed
point has split into two; this is a bifurcation. If |x| > p and c < 1

4
, F ◦nc (x) → ∞ as well.

Therefore we focus all of our attention to the range −p+ < x < p+.
Our next bifurcation occurs when c = −3

4
. This is evident due to the function F ◦2c (x) =

(x2 + c)2 + c.

Figure 3. F ◦2c (x) plotted alongside y = x for c < −3/4



THE MANDELBROT SET 5

For each minima on F 2
c , note that the graph ”resembles” the graph of Fc. It is here that

we expect that F 2
c will behave dynamically similar to Fc did in a larger interval. Plotting

F 3
c , we see that this phenomena is exactly true. Essentially, we expect that F 2

c will attain
derivative −1 and undergo its own period doubling transformation. In this way, our period
2 orbit will turn into a period 4 orbit. In fact, there is nothing stopping this period 4 orbit
doubling into a period 8 orbit, and that into a period 16 orbit itself. Continuing, we expect a
sequence of c-values c1, c2, . . . cn . . . at which Fc undergoes a period doubling transformation
to have a period 2n. This indeed happens, but a rigorous proof is deflected to [Fei78].

This sequence of bifurcations eventually seems to disappear for decreasing values of c, and
the period of the orbit begins to vary erratically. This sequence is called the period doubling
route to chaos. Further analysis can and has been done on this topic, and the reader is
advised to pursue it in [Dev89b]. The truly chaotic nature of this sequence, however, is truly
observed by plotting the orbits of Fc for decreasing values of c. The figure below is the last
100 of 150 iterates of 0 for 300 equally spaced c-values between 1

4
and −2. The reader is

encouraged to observe the descent from an orderly doubling of period into the abyssal bands
of chaos on the right of the graph.

Figure 4. The bifurcation diagram of Fc
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