
ERGODIC THEORY WEEK 10: ERGODIC THEORY OF NON-INTEGER
BASES

SOPHIA AND LORENZO W.

1. An Introduction to Base-β Expansions and the Tβ transformation[5]

For any integer β > 1, we can express every x ∈ [0, 1) as

x =
∞∑
n=1

dn
βn

where 0 ≤ dn < β and dn ∈ Z for all natural numbers n. We call this expression the base-β
expansion of x. These expansions are also referred to as greedy expansions, because they are
created using the greedy algorithm - we take as many of the largest power of β as we can
before adding to digits of lower place-values.

Example. Let us express the number 710 in base 3, ternary. The largest power of 3 less than
or equal to 7 is 31 = 3. 3 goes into 7 two times maximum, leaving a remainder of 1. So, we
write out the base 3 expansion in the following way. The place-values are defined by powers
of the base. Like in base 10, how we have the 10’s place to the left of the ones place, the
right-most place before the 3-imal point is the ones place, and the place to the left of that
is the 31’s place. So, since 7 = 31 × 2 + 1, we write 7 in base 3 as 213.

In fact, any number can be expressed in any base β, even when β is not an integer, as
long as β > 1. It is easy to see that the digits base β would be (0, 1, ...bβc). Note that this
means it is impossible to express a number in base β when β ≤ 1, because the only digit
allowed would be 0.

Example. Let us consider, for example, the number 3 in base φ, the golden ratio or golden
mean, which is equal to 1

2
(
√

5 + 1). The powers of φ can be approximated in base 10 as
φ = 1.618..., φ2 = 2.618..., φ3 = 4.236.... Clearly, the largest power of φ less than or equal to
3 is φ2 = 2.618..., which, when subtracted from 3, gives us a remainder of 3−φ2. The largest
power of φ which goes into 3− φ2 is 1

φ2
, which goes in perfectly, giving us and expansion of

310 = 100.01φ

If we create non-integer expansions without following the greedy algorithm, we do not
always have unique representation. For example,

0.1β = 0.011β

where β is the golden ratio. Thus, we always use the greedy expansion when creating a
β-expansion for any number α.

Recall (from Week 4 Problems 6 and 7) the transformation Tβ : [0, 1)→ [0, 1) defined by

Tβ(x) = βx− bβxc = βx (mod 1).
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Figure 1. The Transformation T5
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Figure 2. The Transformation Tβ where β is the golden ratio
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This transformation is clearly measure preserving when β is an integer. However, we’re
interested in when β is not an integer.

2. Invariant Measures for Tβ

Theorem 2.1. If β > 1 is not an integer, Tβ is not measure-preserving with respect to the
Lebesgue measure, λ.

Note that it’s fairly easy to see this from Figure 2.
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Proof. If a, b ∈ [0, 1), such that β − bβc < a < b < 1, then

T−1β ((a, b)) =

bβc−1⋃
j=0

(
a

β
+
j

β
,
b

β
+
j

β
)

because Tβ(x) depends only on where it is placed between multiples of 1
β
, and therefore num-

bers that are n
β

apart for n ∈ Z, n < β will map to the same number when the transformation

Tβ is applied. We can find the Lebesgue measure of this to be

λ(T−1β (a, b)) =

bβc−1∑
j=0

b− a
β

=
bβc
β

(b− a).

Since β is not an integer, bβc
β

will be less than one, so λ ◦ T−1β ((a, b)) < λ((a, b)) �

Even so, there is still something interesting that we can do with Tβ and the Lebesgue
measure.

Theorem 2.2. All Tβ-invariant sets have measure zero with respect to the Lebesgue measure
for all β > 1. [2]

Proof. First, let B be a Tβ-invariant set with positive Lebesgue measure, and let C be the
collection of all fundamental intervals. If E ∈ C, we have

λ(B ∩ E)

λ(E)
=
λ(T−n(B) ∩ E)

λ(E)
=
λ(B ∩ T n(E))

λ(T n(E))
= λ(B).

We can now apply Knopp’s lemma with γ = λ(B), so λ(B) = 1. �

However, it has been proven that there exists an invariant measure νβ for all Tβ where
β > 1. Furthermore, it has been proven that this νβ is equivalent to the Lebesgue measure.

Definition 2.3. A measure µ is said to be equivalent to the Lebesgue measure if µ and λ
have the same sets of measure zero.

Note that because λ and ν are equivalent, Tβ must be ergodic with respect to λ.

Theorem 2.4. There exists a measure ν of the form νβ(A) =
∫
A
hβ(x) dx, where hβ satisfies

0 < hβ(x) <∞, and νβ(T−1β (A)) = νβ(A) for all β > 1.

This theorem is very difficult. A proof can be found at [4]. In fact, this invariant measure
has been found explicitly, in another very difficult paper [3] to be

νβ(A) =

∫
A

hβ(x) dx

where

hβ(x) =
1

F (β)

∑
x<Tnβ (1)

1

βn

for x ∈ [0, 1), where the sum is over all nonnegative n such that x < T nβ (1), and the
normalizing constant is

F (β) =

∫ 1

0

∑
x<Tnβ (1)

1

βn
dx
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3. Analogue of Normality

Definition 3.1. Recall from week 4 that if α ∈ [0, 1), we say that α is simply normal in
base b > 1, where b is an integer if we have

lim
N→∞

#{i : 1 ≤ i ≤ N and di = d}
N

=
1

b
,

where α = 0.d1d2..., for all integers 0 ≤ d < b. In other words, the digits of α are uniformly
distributed.

The analogue of normality for base β is that (xβn)n∈N is uniformly distributed mod 1. [1]
More generally,

Definition 3.2. If α = 0.d1d2 . . . is the β-expansion of α ∈ [0, 1), we say that α is simply
normal in base β, where β > 1 if we have

lim
N→∞

#{i : 1 ≤ i ≤ N and di = d}
N

=
1

bβc
,

for all integers 0 ≤ d < bbc.

In week 6, we proved that almost all numbers are simply normal in any integer base b,
but unfortunately this is not the case for non-integer bases.

Example. Consider the base β, where β = 1+
√
5

2
is the golden ratio. We can calculate that

F (β) = 1
2
(5−

√
5), which yields

hβ(x) =

{
5+3
√
5

10
0 ≤ x <

√
5−1
2

5+
√
5

10

√
5−1
2
≤ x < 1

Because the resulting measure νβ is equivalent to the Lebesgue measure, we know that Tβ
is ergodic with respect to ν. We can now apply the Birkhoff Ergodic Theorem to calculate
the frequency of a given block of digits. For almost all x ∈ [0, 1), we have

lim
n→∞

1

n
#{1 ≤ i ≤ n : di(x) = 0}

= lim
n→∞

1

n

n−1∑
i=0

1[0, 1
β
) ◦ T iβ(x)

= νβ([0,
1

β
))

=

∫ 1
β

0

5 + 3
√

5

10
dx =

5 +
√

5

10
≈ 0.7236 . . . ,

so a.e. x ∈ [0, 1) contains ≈ 72.36% zeroes in its base-β expansion, where β is the golden
ratio.
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