ERGODIC THEORY WEEK 10: ERGODIC THEORY OF NON-INTEGER BASES

SOPHIA AND LORENZO W.

1. An Introduction to Base- β Expansions and the T_{β} transformation[5]

For any integer $\beta > 1$, we can express every $x \in [0, 1)$ as

$$x = \sum_{n=1}^{\infty} \frac{d_n}{\beta^n}$$

where $0 \leq d_n < \beta$ and $d_n \in \mathbb{Z}$ for all natural numbers *n*. We call this expression the base- β expansion of *x*. These expansions are also referred to as *greedy expansions*, because they are created using the greedy algorithm - we take as many of the largest power of β as we can before adding to digits of lower place-values.

Example. Let us express the number 7_{10} in base 3, ternary. The largest power of 3 less than or equal to 7 is $3^1 = 3$. 3 goes into 7 two times maximum, leaving a remainder of 1. So, we write out the base 3 expansion in the following way. The place-values are defined by powers of the base. Like in base 10, how we have the 10's place to the left of the ones place, the right-most place before the 3-imal point is the ones place, and the place to the left of that is the 3^1 's place. So, since $7 = 3^1 \times 2 + 1$, we write 7 in base 3 as 21_3 .

In fact, any number can be expressed in any base β , even when β is not an integer, as long as $\beta > 1$. It is easy to see that the digits base β would be $(0, 1, ... \lfloor \beta \rfloor)$. Note that this means it is impossible to express a number in base β when $\beta \leq 1$, because the only digit allowed would be 0.

Example. Let us consider, for example, the number 3 in base ϕ , the golden ratio or golden mean, which is equal to $\frac{1}{2}(\sqrt{5}+1)$. The powers of ϕ can be approximated in base 10 as $\phi = 1.618..., \phi^2 = 2.618..., \phi^3 = 4.236...$ Clearly, the largest power of ϕ less than or equal to 3 is $\phi^2 = 2.618...$, which, when subtracted from 3, gives us a remainder of $3 - \phi^2$. The largest power of ϕ which goes into $3 - \phi^2$ is $\frac{1}{\phi^2}$, which goes in perfectly, giving us and expansion of

$$3_{10} = 100.01_{\phi}$$

If we create non-integer expansions without following the greedy algorithm, we do not always have unique representation. For example,

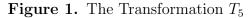
$$0.1_{\beta} = 0.011_{\beta}$$

where β is the golden ratio. Thus, we always use the greedy expansion when creating a β -expansion for any number α .

Recall (from Week 4 Problems 6 and 7) the transformation $T_{\beta}: [0,1) \to [0,1)$ defined by

$$T_{\beta}(x) = \beta x - \lfloor \beta x \rfloor = \beta x \pmod{1}$$

Date: March 26, 2019.



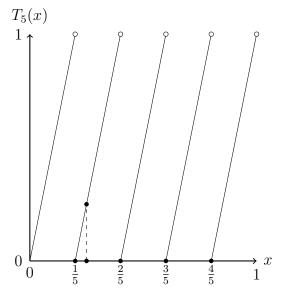
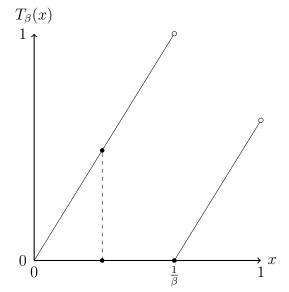


Figure 2. The Transformation T_{β} where β is the golden ratio



This transformation is clearly measure preserving when β is an integer. However, we're interested in when β is not an integer.

2. Invariant Measures for T_β

Theorem 2.1. If $\beta > 1$ is not an integer, T_{β} is not measure-preserving with respect to the Lebesgue measure, λ .

Note that it's fairly easy to see this from Figure 2.

Proof. If $a, b \in [0, 1)$, such that $\beta - \lfloor \beta \rfloor < a < b < 1$, then

$$T_{\beta}^{-1}((a,b)) = \bigcup_{j=0}^{\lfloor\beta\rfloor-1} \left(\frac{a}{\beta} + \frac{j}{\beta}, \frac{b}{\beta} + \frac{j}{\beta}\right)$$

because $T_{\beta}(x)$ depends only on where it is placed between multiples of $\frac{1}{\beta}$, and therefore numbers that are $\frac{n}{\beta}$ apart for $n \in \mathbb{Z}$, $n < \beta$ will map to the same number when the transformation T_{β} is applied. We can find the Lebesgue measure of this to be

$$\lambda(T_{\beta}^{-1}(a,b)) = \sum_{j=0}^{\lfloor \beta \rfloor - 1} \frac{b-a}{\beta} = \frac{\lfloor \beta \rfloor}{\beta} (b-a).$$

Since β is not an integer, $\frac{\lfloor \beta \rfloor}{\beta}$ will be less than one, so $\lambda \circ T_{\beta}^{-1}((a, b)) < \lambda((a, b))$

Even so, there is still something interesting that we can do with T_{β} and the Lebesgue measure.

Theorem 2.2. All T_{β} -invariant sets have measure zero with respect to the Lebesgue measure for all $\beta > 1$. [2]

Proof. First, let B be a T_{β} -invariant set with positive Lebesgue measure, and let C be the collection of all fundamental intervals. If $E \in C$, we have

$$\frac{\lambda(B \cap E)}{\lambda(E)} = \frac{\lambda(T^{-n}(B) \cap E)}{\lambda(E)} = \frac{\lambda(B \cap T^n(E))}{\lambda(T^n(E))} = \lambda(B).$$

We can now apply Knopp's lemma with $\gamma = \lambda(B)$, so $\lambda(B) = 1$.

However, it has been proven that there exists an invariant measure ν_{β} for all T_{β} where $\beta > 1$. Furthermore, it has been proven that this ν_{β} is *equivalent* to the Lebesgue measure.

Definition 2.3. A measure μ is said to be *equivalent* to the Lebesgue measure if μ and λ have the same sets of measure zero.

Note that because λ and ν are equivalent, T_{β} must be ergodic with respect to λ .

Theorem 2.4. There exists a measure ν of the form $\nu_{\beta}(A) = \int_{A} h_{\beta}(x) dx$, where h_{β} satisfies $0 < h_{\beta}(x) < \infty$, and $\nu_{\beta}(T_{\beta}^{-1}(A)) = \nu_{\beta}(A)$ for all $\beta > 1$.

This theorem is very difficult. A proof can be found at [4]. In fact, this invariant measure has been found explicitly, in another very difficult paper [3] to be

$$\nu_{\beta}(A) = \int_{A} h_{\beta}(x) \, dx$$

where

$$h_{\beta}(x) = \frac{1}{F(\beta)} \sum_{x < T_{\beta}^{n}(1)} \frac{1}{\beta^{n}}$$

for $x \in [0,1)$, where the sum is over all nonnegative n such that $x < T^n_{\beta}(1)$, and the normalizing constant is

$$F(\beta) = \int_0^1 \sum_{x < T_\beta^n(1)} \frac{1}{\beta^n} dx$$

3. Analogue of Normality

Definition 3.1. Recall from week 4 that if $\alpha \in [0, 1)$, we say that α is *simply normal* in base b > 1, where b is an integer if we have

$$\lim_{N \to \infty} \frac{\#\{i : 1 \le i \le N \text{ and } d_i = d\}}{N} = \frac{1}{b}$$

where $\alpha = 0.d_1d_2...$, for all integers $0 \le d < b$. In other words, the digits of α are uniformly distributed.

The analogue of normality for base β is that $(x\beta^n)_{n\in\mathbb{N}}$ is uniformly distributed mod 1. [1] More generally,

Definition 3.2. If $\alpha = 0.d_1d_2...$ is the β -expansion of $\alpha \in [0, 1)$, we say that α is simply normal in base β , where $\beta > 1$ if we have

$$\lim_{N \to \infty} \frac{\#\{i : 1 \le i \le N \text{ and } d_i = d\}}{N} = \frac{1}{\lfloor \beta \rfloor},$$

for all integers $0 \le d < \lfloor b \rfloor$.

In week 6, we proved that almost all numbers are simply normal in any integer base b, but unfortunately this is not the case for non-integer bases.

Example. Consider the base β , where $\beta = \frac{1+\sqrt{5}}{2}$ is the golden ratio. We can calculate that $F(\beta) = \frac{1}{2}(5-\sqrt{5})$, which yields

$$h_{\beta}(x) = \begin{cases} \frac{5+3\sqrt{5}}{10} & 0 \le x < \frac{\sqrt{5}-1}{2} \\ \frac{5+\sqrt{5}}{10} & \frac{\sqrt{5}-1}{2} \le x < 1 \end{cases}$$

Because the resulting measure ν_{β} is equivalent to the Lebesgue measure, we know that T_{β} is ergodic with respect to ν . We can now apply the Birkhoff Ergodic Theorem to calculate the frequency of a given block of digits. For almost all $x \in [0, 1)$, we have

$$\lim_{n \to \infty} \frac{1}{n} \# \{ 1 \le i \le n : d_i(x) = 0 \}$$
$$= \lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} \mathbb{1}_{[0,\frac{1}{\beta})} \circ T_{\beta}^i(x)$$
$$= \nu_{\beta}([0,\frac{1}{\beta}))$$
$$= \int_0^{\frac{1}{\beta}} \frac{5+3\sqrt{5}}{10} \, dx = \frac{5+\sqrt{5}}{10} \approx 0.7236 \dots$$

so a.e. $x \in [0, 1)$ contains $\approx 72.36\%$ zeroes in its base- β expansion, where β is the golden ratio.

REFERENCES

References

- Javier Ignacio Almarza and Santiago Figueira. "Normality in non-integer bases and polynomial time randomness". In: *Journal of Computer and System Sciences* 81.7 (2015), pp. 1059–1087.
- [2] Karma Dajani and Cor Kraaikamp. *Ergodic Theory of Numbers*. 29. Cambridge University Press, 2002.
- [3] Alexander Osipovich Gel'fond. "A common property of number systems". In: *Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya* 23.6 (1959), pp. 809–814.
- [4] Alfréd Rényi. "Representations for real numbers and their ergodic properties". In: Acta Mathematica Hungarica 8.3-4 (1957), pp. 477–493.
- [5] Nikita Sidorov. "Expansions in Non-Integer Bases". In: School of Mathematics, The University of Manchester (2010). URL: http://www.maths.manchester.ac.uk/ ~nikita/qmul-2010.pdf.