ERGODIC THEORY WEEK 10: ERGODIC THEORY OF NON-INTEGER
BASES

SOPHIA AND LORENZO W.

1. AN INTRODUCTION TO BASE- EXPANSIONS AND THE T3 TRANSFORMATION|5]

For any integer 8 > 1, we can express every = € [0,1) as
9] dn
x = —
2
where 0 < d,, < 8 and d,, € Z for all natural numbers n. We call this expression the base-3
expansion of z. These expansions are also referred to as greedy expansions, because they are
created using the greedy algorithm - we take as many of the largest power of 5 as we can
before adding to digits of lower place-values.

Ezxample. Let us express the number 7, in base 3, ternary. The largest power of 3 less than
or equal to 7 is 3! = 3. 3 goes into 7 two times maximum, leaving a remainder of 1. So, we
write out the base 3 expansion in the following way. The place-values are defined by powers
of the base. Like in base 10, how we have the 10’s place to the left of the ones place, the
right-most place before the 3-imal point is the ones place, and the place to the left of that
is the 3'’s place. So, since 7 = 3! x 2+ 1, we write 7 in base 3 as 215.

In fact, any number can be expressed in any base (3, even when [ is not an integer, as
long as § > 1. It is easy to see that the digits base § would be (0, 1,...|3]). Note that this
means it is impossible to express a number in base § when § < 1, because the only digit
allowed would be 0.

Ezxample. Let us consider, for example, the number 3 in base ¢, the golden ratio or golden
mean, which is equal to %(\/5 + 1). The powers of ¢ can be approximated in base 10 as
¢ =1.618...,¢> = 2.618..., ¢> = 4.236.... Clearly, the largest power of ¢ less than or equal to
3 is ¢? = 2.618..., which, when subtracted from 3, gives us a remainder of 3 — ¢?. The largest

power of ¢ which goes into 3 — ¢? is %, which goes in perfectly, giving us and expansion of

350 = 100.01,

If we create non-integer expansions without following the greedy algorithm, we do not
always have unique representation. For example,

0.15 = 0.0114

where [ is the golden ratio. Thus, we always use the greedy expansion when creating a
B-expansion for any number a.
Recall (from Week 4 Problems 6 and 7) the transformation 7p : [0,1) — [0, 1) defined by

Ts(x) = Pfr — |Bx] = fzr  (mod 1).
Date: March 26, 2019.
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Figure 1. The Transformation T%
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Figure 2. The Transformation T3 where 3 is the golden ratio
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This transformation is clearly measure preserving when [ is an integer. However, we're
interested in when [ is not an integer.

2. INVARIANT MEASURES FOR Tj

Theorem 2.1. If 3 > 1 is not an integer, Tj is not measure-preserving with respect to the
Lebesque measure, .

Note that it’s fairly easy to see this from Figure [2]
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Proof. 1f a,b € [0, 1), such that 5 — |#| < a < b < 1, then

18]—
@ J
- + == +
L_J ERAC R
because Tj(z) depends only on where it is placed between multiples of %, and therefore num-

bers that are % apart for n € Z, n < 8 will map to the same number when the transformation
T} is applied. We can find the Lebesgue measure of this to be

. ~b—a _|B]
MNT5 (a,b :E —— =—(b—a).
Since [ is not an integer, LﬂJ will be less than one, so Ao Ty '((a,b)) < M(a,b)) [

Even so, there is still Somethlng interesting that we can do with T3 and the Lebesgue
measure.

Theorem 2.2. All Tz-invariant sets have measure zero with respect to the Lebesgue measure

forall 5> 1. [2]

Proof. First, let B be a Tg-invariant set with positive Lebesgue measure, and let C be the
collection of all fundamental intervals. If E € C, we have
AMBNE) MNTI™B)NE) MNBNTYE))
NE) A(E) - ANT(E)
We can now apply Knopp’s lemma with v = A\(B), so A(B) = 1. [ |

— \(B).

However, it has been proven that there exists an invariant measure vg for all T where
£ > 1. Furthermore, it has been proven that this v is equivalent to the Lebesgue measure.

Definition 2.3. A measure p is said to be equivalent to the Lebesgue measure if g and A
have the same sets of measure zero.

Note that because A and v are equivalent, 73 must be ergodic with respect to A.

Theorem 2.4. There ezists a measure v of the form vg(A fA hg(x) dx, where hg satisfies
0 < hg(z) < 00, and V@(Tﬁ_l(A)) =vg(A) for all > 1.

This theorem is very difficult. A proof can be found at [4]. In fact, this invariant measure
has been found explicitly, in another very difficult paper [3] to be

va(A) = / ho(z) d

hﬁ Z Bn

<T" (1)

where

for x € [0,1), where the sum is over all nonnegative n such that = < Tg(1), and the

normalizing constant is
o= >

:1:<T”
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3. ANALOGUE OF NORMALITY

Definition 3.1. Recall from week 4 that if « € [0,1), we say that « is simply normal in
base b > 1, where b is an integer if we have

lim #{i:1<i< N and d; =d} 1

N—o00 N b’
where o = 0.dyds..., for all integers 0 < d < b. In other words, the digits of o are uniformly
distributed.

The analogue of normality for base 3 is that (z5"),en is uniformly distributed mod 1. [1]
More generally,

Definition 3.2. If @ = 0.dyd, . .. is the S-expansion of o € [0,1), we say that « is simply
normal in base 3, where > 1 if we have

. #{i:1<i<Nandd;, =d} 1

lim = ’
for all integers 0 < d < |b].

In week 6, we proved that almost all numbers are simply normal in any integer base b,
but unfortunately this is not the case for non-integer bases.

Ezxample. Consider the base 3, where § = %5

F(B) = 1(5 — /5), which yields

2
54-3v5 0< 1< V5-1
hsl) = { 0 aa

54v5 V61
oo TzosT<l

is the golden ratio. We can calculate that

Because the resulting measure vg is equivalent to the Lebesgue measure, we know that T
is ergodic with respect to v. We can now apply the Birkhoff Ergodic Theorem to calculate
the frequency of a given block of digits. For almost all = € [0,1), we have
1
lim —#{1 <i<n:di(z) =0}

n—oo 1N,

n—1
1 ;
= Jim 52 Yoy o Tl

1
=vs(10,3))

/é5+3\/3d 5++5
= x:
) 10 10

so a.e. x € [0,1) contains ~ 72.36% zeroes in its base-f expansion, where 3 is the golden
ratio.

~ 0.7236. ..,
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