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Abstract

In this article we seek to provide some insight into the study of rational billiards. We start
by discussing the idea that the trajectory of a particle that we wish to track inside of a k-gon
can be more easily expressed as a line in the flat plane which is tiled by the afforementioned
k-gons. We also discuss the idea of invariant measures and ergodicity as it relates to billiards.

1 Introduction and The General Billiards Case

Let’s start by defining our billiards table, let’s call the boundary of the table a curve γ, a smooth
and closed curve. Let’s also define a space M of all the unit tangent vectors with their feet on γ and
pointing inwards the convex polygon. Thus we now have a set of starting points for out billiards
ball, an element of M , a vector (x, v). Suppose now that we let the billiards ball go, and it hits γ
again at x1, with a new velocity vector v1, we can now define a transformation T : M → M that
takes in (x, v) and outputs its reflection across the boundary of γ, (x1, v1).
We are now ready to define our measure, in this case an area measure. We want to parameterize
γ by arc length t (perimeter) and the angle α between v and a side of γ. Now, we can notice that
(t, α) describe M . We denote the area measure µ as:

µ = sin(α)
δα

δt

which we claim is invariant with respect to the function T .

Proof. Note that sinα > 0 on M . To show its invariance, let d(t, t1) be the distance between the
points γt and γt1 . Then we notice that the partial derivative ∂f

∂t is the projection of the gradient

of γtγt1 onto the curve at point γt. This gradient makes angle α with the curve, so ∂f
∂t = cosα.

Similarly, ∂f
∂t1

= − cosα1. Therefore,

df =
∂f

∂t
dt+

∂f

∂t1
dt1 = − cosα1 + cosα

Hence,

0 = d2f = sin(α)
δα

δt
− sin(α)

δα

δt1
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2 Trajectories in Polygons

2.1 The Fagano Construction

Let’s start with the simple case of an acute triangle. Then there is a periodic trajectory given
by the following elementary geometric construction due to Fagano:

Lemma 2.1. The triangle connecting the base of the altitudes is a 3 periodic billiards trajectory.

Proof.
A C

B
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The quadrilateral BPOR has two right angles, thus it is inscribed in a circle. Now, since the angles
APR and ABQ subtend the same arc, those angles are equal, and similarly, the angles APQ and
ACR are equal. Now it just remains to show that ABQ and ACR are equal, and this is shown
since they both complement BAC, and so the result follows that they are periodic as all the angles
of incidences are equal to the angle of reflection.

Indeed, the Fagano Construction degenerates for right triangles, in which case there does exist
constructions that yield periodic trajectories.

2.2 The Poincare Recurrence Theorem

The Poincare Recurrence Theorem is stated as follows:

Theorem 2.2 (Poincaré Recurrence Theorem). Let (X, , µ) be a finite measure space, and let T
be a measure-preserving transformation. Then T is recurrent.

In other words, if T is a measure preserving transformation on a finite measure space. Then,
for any set A there exists a point x ∈ A that returns to A, and the set of points in A that return
to A has measure 0.

2.3 Diving into Periodic Trajectories in Rational Polygons

A polygon is called rational if all its angles are rational multiples of π. The first critical observa-
tion is that a trajectory can only have finitely many directions, so we must introduce a group G(P )
to be able to keep track of them for our polygon P . Now to generate G(P ), we draw the parallel
line through the center to each of the sides, and then let G(P ) be the group of linear isometries
generated by the reflections of those lines. Thus, when a ball bounces of a side, it is acted on by a
member of G(P ). Now, we let the angles of our polygon be miπ

ni
with mi, ni coprime integers. Now

let N be the least common multiple of all the ni. Then G(P ) is just the group of of symmetries of
a regular N -gon,which has 2N elements. Thus the maximum number of directions a billiard ball
can go is 2N .
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The two dimensional space splits into many invariant one dimensional subspaces which we can
relate to the different directions of billiards trajectories. As such, each subspace has an invariant
length element, which we can visualize as the width a parallel beam of rays of the trajectory.
In this way, we can construct very specific types of periodic trajectories in rational polygons. The
process is as follows: We first choose a side s, and we let U consist of unit vectors with a foot on s
and orthagonal to s. Then by Poincare’s Recurrence Theorem, there is a phase point in U that at
some point, returns to U. The respective starts from side s and returns at a right angle as well, at
which point in just repeats its trajectory backwars, and is this periodic.
Rational Polygons are in fact the only group of shapes for which billiards trajectories are well char-
acterized and understood. For example, we can find more periodic trajectories in right triangles:

Theorem 2.3. When given a right triangle, a.e billiard trajectory that begins at the side of the
right angle in a orthogonal direction returns to this side in the same direction.

Proof. We already know this from above for rational right triangles. For irrational triangles, we
must do something different. We tile the plane with rhombi that consist of 4 of these triangles
joined at their right angle, and we let α be the acute angle of the rhombus. The trajectories are
now just lines in the plane tiled by these rhombi.
We refer to the original rhombus as R0. Notice that each time we reflect a rhombus in this
construction, we rotate it by angle ±α. Then, up to translations, the rhombi can be indexed by
Rn with n ∈ Z.
We now do the following construction. We use 4 of these rhombi in consecutive order and make
them a kinds of torus shape by which we loop back from the last to the first, from which we get
an infinite surface of these rhombi partially foliated by the billiard beam. A trajectory in Rn may
either intersect Rn−1 in which case we call this a negative intersection, or Rn+1 which we call a
positive intersection.
We want to show that almost all trajectories return to R0. Since the triangle is irrational, for every
ε > 0 there exists an n > 0 such that the vertical projection to the positive intersecting side is less
than ε, since irrational rotations are ergodic, so the set of trajectories that reach Rn+1 has measure
less than ε. Since ε was arbitrarily small, the result is shown.

2.4 Ergodic Theory

Consider billiards inside a unit square. By tiling the plane with such squares, we reduce the
billiard trajectory to a line in that plane. Now, if we consider a 2x2 square that consists of 4 unit
squares that share a vertex, then we connect its oppsite sides to make a torus, similarly to the
triangle above. The billiard trajectory is just a geodesic line on that torus.
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Consider the trajectories at an angle θ from a point x from the lower side of the square. This
trajectory intersects the upper side of the square at a point x + 2 cot θ (mod 2). Then when we
rescale into the smaller square, we get the rotational transformation T which takes x → x + cot θ
(mod 1). Thus the billiard trajectory in a fixed direction reduces to a circle rotation.
From our ergodic properties of rotations, if the slope of the trajectory is rational, we know that
it is periodic, and if it is irrational, then the rotation is ergodic(in fact, uniquely ergodic) and is
dense everywhere and uniformly distributed in the square.
It is not known whether every polygon has a periodic billiard trajectory; this is unknown even for
obtuse triangles. Substantial progress has recently been made by R. Schwartz, who proved that
every obtuse triangle with angles not exceeding 100 degrees has a periodic billiard path. This work
significantly relies on a computer program, however.

2.5 Conclusion and Application

Billiards have applications in various different classes of theory ranging from physics to chem-
istry. The techniques used, especially for rational polygons, are not only efficient but very repro-
ducible, which makes for the rapid development in theory in the field. As of now, there is a ton of
new work yet to be done, but the rate at which it is being done is astounding and hard to keep up
with.
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