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1. The Information Function

Let T : X → X be a measure-preserving transformation on a probability space
(X,A, µ). The entropy of T is, roughly, the asymptotic expected information gain
we have upon knowing where iterates of T will move a random x ∈ X in an optimal
finite partition of X, per iterate of T .

This is a loaded concept, so we will begin simply by considering what “information”
means in a probability space. Letting A ∈ A, we think of our answer to the following
question as the “information” of A.

Question 1.1. Suppose a random element x ∈ X is picked. If we know x ∈ A, then
how much information do we gain about x?

This depends, of course, on A. In particular, if A = X then this tells us nothing and
therefore we gain zero information on x. On the other hand, if A contains only one
element then we know exactly what x is and we gain maximum information about
x. In general, we see an negative correlation between information gain and measure.
When the measure of A is large, knowing x ∈ A does not tell us much about the
value of x. But when A is quite small we can locate x fairly precisely. So, intuitively,
we want our information function I : A → R+ such that I(A) = 0 when µ(A) =
1 (that is, our information gain is 0 when A contains almost everything in X), I
increases as µ(A) decreases, and I(A) approaches infinity as µ(A) goes to 0 (we gain
“maximum” information when µ(A) = 0). There is one more desirable property of
I which is less obvious than the others.

To see this, suppose our probability space measures the outcomes of die rolls, Then,
X = {1, 2, 3, 4, 5, 6} is the set of possible outcomes, A = P(X), and for each A ∈ A,

µ(A) = |A|
6

. Let A = {3, 4, 5}, B = {2, 3} ∈ A. We are given that x ∈ A for a

randomly picked x ∈ X. Notice that the probability x ∈ B is still µ(B) = 1
3

even
though we have narrowed down the possibilities for x. This leads to the following
question.

Question 1.2. For a randomly picked x ∈ X and A,B ∈ A, if we know x ∈ A, then
what is the probability x ∈ B?

We have that x ∈ A, which is an event of probability µ(A). Now, we want the
probability that x is also in B, or that x ∈ A ∩B, which is

µ(A ∩B)

µ(A)
.
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Then, we will define conditional probability as follows.

Definition 1.1. For A,B ∈ A, conditional probability is defined as

µ(B | A) =
µ(A ∩B)

µ(A)
.

This can be thought of as the probability a point x ∈ A will also land in B.

But in our previous example, this probability was equal to µ(B). That is, knowing
x ∈ A does not affect the probability x ∈ B. This is a special case we will denote as
independence:

Definition 1.2. Given a probability space (X,A, µ) and sets A,B ∈ A, we say A
and B are independent if µ(B | A) = µ(B), that is, µ(A ∩B) = µ(A)µ(B).

So, how does this relate to our information function? The information gained by
knowing that x ∈ A and x ∈ B is I(A ∩ B). When A and B are independent, if
we have the information I(A) (that is, x ∈ A) then the additional information that
x ∈ B is still I(B). This is because knowing x ∈ A doesn’t tell us anything about
whether x ∈ B. So the information that x ∈ A and x ∈ B is simply I(A) + I(B),
giving us

I(A) + I(B) = I(A ∩B)

for independent sets A,B ∈ A. Given this extra condition, the definition of infor-
mation below follows.

Definition 1.3. For a probability space (X,A, µ) we define it’s information function
I : A → R+ to be

I(A) := − log µ(A),

which is a measure of the information gained about the value of a random element
x ∈ X upon learning x ∈ A.

Similarly, we define conditional information. We can think of this as the information
gained from learning x ∈ B having already learned x ∈ A.

Definition 1.4. Furthermore,

I(B | A) := − log µ(B | A)

for A,B ∈ A is the conditional information of B given A.

2. Entropy of a Partition

Let’s address the “partition” part of our rough concept of entropy. We’ll begin with
a couple definitions relating to partitions.

Definition 2.1. For a measure space (X,A, µ), α = {A1, A2, . . . , Ak} is a finite
partition of X if A1, A2, . . . , Ak ∈ A are disjoint, and their disjoint union is X.

Definition 2.2. Given a finite partition α of X, the α-address of a point x ∈ X is
the unique Ai ∈ α such that x ∈ Ai.
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We will use these to define the entropy of a finite partition. The entropy of a
finite partition α can be thought of as the average amount of information gained
from knowing the α-address of a randomly picked point x ∈ X. We know that the
information we gain from knowing x ∈ Ai for a particular Ai ∈ α is I(Ai). And the
probability that x ∈ Ai is µ(Ai). From here, a definition naturally follows.

Definition 2.3. The entropy of a partition α is

H(α) : =
k∑
i=1

µ(Ai)I(Ai)

= −
k∑
i=0

µ(Ai) log µ(Ai)

This definition makes sense because we are simply taking the weighted average of
information gain; the value of each event is multiplied by the probability it will occur.
We can also define conditional entropy.

Definition 2.4. For two partitions α = {A1, A2, . . . , Ak}, β = {B1, B2, . . . , B`}, the
conditional entropy of β with respect to α is

H(β | α) =
k∑
i=1

µ(Ai)

(∑̀
j=1

I(Bj | Ai)µ(Bj | Ai)

)

= −
k∑
i=1

µ(Ai)

(∑̀
j=1

µ(Bj | Ai) log µ(Bj | Ai)

)
If we are given the α-address of random x ∈ X, we can think of this as the average
or expected information gain after learning the β-address as well. We take the
probability of x landing in each Ai and multiply it by the inside sum, which takes
the weighted average of information gained after learning x ∈ Ai having already
known x ∈ Bj for each Bj ∈ β. This in total gives us the average information gain
having already known the β-address.

There are a few lemmas about conditional entropy which will become useful to us
later on. We need some definitions to understand the statements of these lemmas.

Definition 2.5. For two finite partitions α, β of X, we say β is a refinement of α,
denoted α ≤ β, if for all B ∈ β there exists an A ∈ α such that µ(B ∩ A) = µ(B).
That is, almost all of B is in A.

Definition 2.6. The join of partitions α and β is the partition

α ∨ β := {Ai ∩Bj : Ai ∈ α, Bj ∈ β}.

Notice that knowing the α∨β-address of a point x ∈ X is essentially the exact same
as knowing both the α-address and β-address of x.
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Lemma 2.1. If α, β are finite partitions, then the following two equations hold.

(1) H(α ∨ β) = H(α) +H(β | α)

(2) H(β | α) ≤ H(β)

Proof. Omitted. [1] �

3. Entropy of a Transformation

We are almost ready to introduce our measure-preserving transformation, T : X →
X. We’ll define the entropy of this transformation, but specifically with respect to
any finite partition α of X.

Definition 3.1. For a finite partition α of X and a measure-preserving transforma-
tion T : X → X, we notate the partition

T−n(α) := {T−n(Ai) : Ai ∈ α}.

The rigorous definition of entropy of a transformation with respect to a partition is
complicated, but it is easier to introduce it first and then explain how it works.

Definition 3.2. Given a measure-preserving transformation T : X → X on a prob-
ability space (X,A, µ), the entropy of T with respect to a finite partition α of X
is

hµ(T, α) = lim
n→∞

1

n
H

(
n−1∨
i=0

T−i(α)

)
.

Note that knowing the
∨n−1
i=0 T

−i(α)-address of a randomly picked point x ∈ X is the
same as knowing where it lies in each T−i(α) from i = 0 to n− 1, because then we
can simply take the intersection of all those T−i(α) to find the address. Then, the
H in the equation calculates the average information gained upon knowing where x
lies in each of α, T−1(α), . . . , T n−1(α). For all 0 ≤ j ≤ n − 1, let Axj ∈ α be such
that T−j(Axj) is the T−j(α)-address of x. That is,

x ∈ Ax0 ∩ T−1(Ax1) ∩ · · · ∩ T−(n−1)(Axn−1) ∈
n−1∨
i=0

T−i(α).

Then, for all 0 ≤ i ≤ n− 1,
T i(x) ∈ Axi

So essentially, H in our definition denotes average or expected information gained
upon knowing the α-address of all of x, T (x), T 2(x), . . . , T n−1(x). The 1/n simply
divides this expected information over the number of iterates of T to get the average
information gain per iterate. We take the limit to find the asymptotic average; it
remains to show that this limit exists.

Definition 3.3. A sequence {sn} is called subadditive if sn+m ≤ sn+sm for all n,m.
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Lemma 3.1. If {sn} is a subadditive sequence, then

lim
n→∞

1

n
sn = inf

n

1

n
sn

Proof. The reader may try this as an exercise in elementary real analysis. [2] �

Before we give the proof of the limit existence, note that for all i, H(T−i(α)) = H(α)
since µ(T−i(α)) = µ(α) and H depends solely upon µ.

Theorem 3.1. The sequence {sn} such that

sn := H

(
n−1∨
i=0

T−i(α)

)
is subaddative.

Proof. Recall Lemma 2.1. We have that for all n,m,

sn+m = H

(
n+m−1∨
i=0

T−i(α)

)

= H

(
n−1∨
i=0

T−i(α)

)
+H

(
n+m−1∨
i=n

T−i(α)

∣∣∣∣∣
n−1∨
i=0

T−i(α)

)

≤ H

(
n−1∨
i=0

T−i(α)

)
+H

(
n+m−1∨
i=n

T−i(α)

)

= H

(
n−1∨
i=0

T−i(α)

)
+H

(
m−1∨
i=0

T−i(α)

)
= sn + sm

�

Corollary 3.1. hµ(T, α) is well-defined and in particular equals

lim
n→∞

1

n
H

(
n−1∨
i=0

T−i(α)

)
= inf

n

1

n
H

(
n−1∨
i=0

T−i(α)

)
.

Now that we have showed the entropy of a transformation with respect to a partition
is well-defined, the definition of entropy of a transformation follows.

Definition 3.4. The entropy of a transformation T : X → X is

hµ(T ) = sup
α
hµ(T, α).

Essentially, depending on how we choose α, knowing the α-address of the iterates of
T on x could give us lots of information on x. That is, we can choose α such that
hµ(T, α) is high. The entropy of T gives us the best upper bound on that entropy.
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4. Calculating Entropy Efficiently

But taking the supremum over every partition X is not a particularly efficient cal-
culation. As we will show, there is a much simpler way for calculating entropy.

Definition 4.1. For any S ⊆ P(X), that is, any collection of subsets of X, we say
the σ-algebra generated by S, denoted σ(S), is the “smallest” σ-algebra containing
S. By “smallest” we mean the intersection of all σ-algebras containing S.

Notice that all partitions α are a subset of P(X), so this definition holds for them
as well. But what if we want the smallest σ-algebra containing many partitions
α1, α2, . . . , αn? We will denote this σ(α1, α2, . . . , αn).

Theorem 4.1. If α1, α2, . . . are finite partitions of X, then

(3) σ(α1, α2, . . . , αn) = σ

(
n∨
i=1

αi

)
holds for all n, and

(4) σ(α1, α2, . . . ) = σ

(
∞∨
i=1

αi

)
Proof. To show (3), we need that for all Ai ∈ αi,

Ai ∈ σ

(
∞∨
i=1

αi

)
,

and if A =
n⋂
i=1

Ai for Ai ∈ αi,

A ∈ σ(α1, α2, . . . , αn).

These follow trivially from the property of countable unions and intersections under
σ-algebras, and the proof generalizes to show (4). �

Corollary 4.1. Since lim
n→∞

σ(α1, α2, . . . , αn) = σ(α1, α2, . . . ), we can conclude that

lim
n→∞

σ

(
n∨
i=1

αi

)
= σ

(
∞∨
i=1

αi

)
This allows us to understand the “easier” way of computing transformation entropy.

Theorem 4.2 (Abramov’s Theorem). If α1 ≤ α2 ≤ ... are finite partitions of X for
a probability space (X,A, µ) such that σ(α1, α2, . . . ) = A, then

hµ(T ) = lim
n→∞

hµ(T, αn).

Lemma 4.1 (Approximation Lemma). For all r ∈ N and ε > 0, there exists δ =
δ(r, ε) > 0 such that if α = {A1, A2, . . . , Ar} and β = {B1, B2, . . . , Ar} are partitions
of X satisfying µ(Ai∆Bi) < δ, then H(β | α) < ε.
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Proof. (Of Approximation Lemma) Choose δ = δ(r, ε) such that

−(1− rδ) log (1− rδ)− r(r − 1)δ log δ < ε.

Consider the following partition γ of X:

γ := {C} ∪ {Ai ∪Bj | i 6= j}

in which

C :=
r⋃
i=1

Ai ∩Bi.

That is, γ is like α ∨ β except all Ai ∩Bi are combined to become only one element
of the partition. Since α ∨ β = α ∨ γ trivially,

H(β | α) +H(α) = H(β ∨ α) = H(γ ∨ α) = H(γ | α) +H(α),

implying H(β | α) = H(γ | α). Furthermore, by our hypothesis we have that for
i 6= j, µ(Ai ∩Bj) < δ and µ(C) < 1− rδ, so

H(β | α) = H(γ | α)

≤ H(γ)

≤ −µ(C) log(µ(C))−
∑
i 6=j

µ(Ai ∩Bj) log µ(Ai ∩Bj)

≤ (1− rδ) log (1− rδ)− r(r − 1)δ log δ

< ε.

�

Proof. (Of Abramov’s Theorem) Fix ε > 0 and pick a finite partition β such that

hµ(T, β) > hµ(T )− ε.

Letting r = card(β) (the cardinality of β), we can find a partition α satisfying the
outlined properties in the approximation lemma such that α ≤ αn for some αn.
(This step is left up to the reader to understand). By the approximation lemma,
H(β | α) < ε. Thus,

hµ(T ) ≤ hµ(T, α ∨ β) ≤ hµ(T, α) +H(β | α) ≤ hµ(T, α) + ε,

implying that

hµ(T, αn) ≥ hµ(T )− 2ε.

But since hµ(T, αi) is a monotonically increasing sequence, this implies that

lim
n→∞

hµ(T, αn) = hµ(T ).

�

Then, we can calculate the entropy of a transformation by taking the limit of en-
tropies with respect to a partition. In fact, this proof lets us do even better.
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Definition 4.2. We call a partition α a strong generator of A if
∞∨
n=1

n∨
i=1

T−i(α) = A.

That is, if the series of refinements
∨n
i=1 T

−i(α) all together generates A.

Corollary 4.2. If α is a strong generator of A, then

hµ(T ) = hµ(T, α).

Proof. Omitted [1] �

Now the entropy can be directly calculated if we choose our partition α smartly to
be a strong generator.
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