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1. Introduction

In this paper, we explain how to use Fourier analysis to prove that certain measure-
preserving transformations are ergodic. We first define Fourier series for a function f :

Definition 1.1. A Fourier series of f is f(x) =
∑

n∈Z ane
2πinx, where

an =

∫
R/Z

f(x)e2πinxdx

.

One important property of Fourier series is that two Fourier series represent the same
function almost everywhere if and only if their Fourier coefficients agree. This will allow us
to compare the Fourier coefficients of a function and a function compose a transformation
to tell whether function is constant almost everywhere.

The Riemann-Lebesgue Lemma, which tell us that the Fourier coefficients approach 0 at
±∞, is useful for Fourier analysis:

Lemma 1.2. Let f be an integrable function with respect to the Lebesgue measure, and let
an be the nth coefficient of the Fourier series of f . Then lim|n|→∞ an = 0.

Proof. To prove that the coefficients of the Fourier series approaches 0, we prove that

lim
n→∞

∫
R/Z

f(x)e2πinxdλ = 0

. Let A1, A2, A3, · · · be intervals, where Ai = (ai, bi). Then, let s(x) =
∑N

i=1 ci1Ai
, where N

is a positive integer and the ci’s are real coefficients. Then:

lim
n→∞

∫
R/Z

s(x)e2πinxdλ

= lim
n→∞

∫
R/Z

(
N∑
i=1

ci1Ai
)e2πinxdλ

= lim
n→∞

N∑
i=1

∫
R/Z

ci1Ai
e2πinxdλ

= lim
n→∞

N∑
i=1

ci

∫ bi

ai

e2πinxdx
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=
N∑
i=1

lim
n→∞

ci(
1

2π
)(
e2πinbi − e2πinai

in
)

= 0

as desired.
Since measurable functions can be arbitrarily well approximated by simple functions, the

proof extends to measurable functions as well. �

2. The Stone-Weierstrass Theorem

Theorem 2.1. Let [a, b] be an interval with real numbers a, b, and let f : [a, b] → R be
continuous. Then for every ε > 0, there exists a polynomial p such that for all x ∈ [a, b], we
have |f(x)− p(x)| < ε.

Proof. We prove the theorem for a = 0, b = 1; to prove the general version, we can scale the
functions so that the theorem holds for any interval with real endpoints.

The nth Bernstein polynomial of a continuous function on [0, 1] is defined as:

Bn(x, f) =
n∑
k=0

f(
k

n
)

(
n

k

)
xk(1− x)n−k

These polynomials can be used to approximate a continuous function on this interval. We
can prove some basic properties of Bernstein polynomials:

Lemma 2.2. Let f be a continuous function. Then, the Bernstein polynomials of f satisfy
the following properties:

(1) Bn(x, cf) = cBn(x, f)
(2) g(x) ≤ f(x) for all x implies Bn(x, g) ≤ Bn(x, f)
(3) Bn(x, f + c) = Bn(x, f) + c

Proof. (1) We have

Bn(x, cf) =
n∑
k=0

cf(
k

n
)

(
n

k

)
xk(1− x)n−k

= c

n∑
k=0

f(
k

n
)

(
n

k

)
xk(1− x)n−k = cBn(x, f)

(2) Assume g(x) ≤ f(x) for all x. Then,

Bn(x, g) =
n∑
k=0

g(
k

n
)

(
n

k

)
xk(1− x)n−k

Since g( k
n
) ≤ f( k

n
):

≤
n∑
k=0

f(
k

n
)

(
n

k

)
xk(1− x)n−k = Bn(x, f)

(3) By the definition of Bernstein polynomials, we have

Bn(x, f − f(c)) =
n∑
k=0

(f − f(z))(
k

n
)

(
n

k

)
xk(1− x)n−k
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=
n∑
k=0

f(
k

n
)

(
n

k

)
xk(1− x)n−k −

n∑
k=0

f(z)

(
n

k

)
xk(1− x)n−k

= Bn(x, f)− f(z)
n∑
k=0

(
n

k

)
xk(1− x)n−k

= Bn(x, f)− f(z)(x+ (1− x))n

= Bn(x, f)− f(z)

as desired. �

Let x, z ∈ [0, 1], and let ε > 0. Recall that ||f ||∞ = ess sup f = sup a : (f−1(a,∞)) = 0.
Let M = ||f ||∞.

If |x− z| ≥ δ, then |f(x)− f(z)| ≤ 2M by the definition of M . We know that |x−z|
δ
≥ 1,

so |f(x)− f(z)| ≤ 2M((x−z
δ

)2) + ε
2
. On the other hand, since f is continuous, we know that

there exists δ such that if |x− z| ≤ δ, then |f(x)− f(z)| ≤ ε
2
≤ 2M((x−z

δ
)2) + ε

2
.

Then, by Lemma 2.2, we have

Bn(x, f)− f(z) = Bn(x, f − f(z))

≤ Bn(x, 2M((
x− z
δ

)2) +
ε

2

=
2M

δ2
Bn(x, (x− z)2) +

ε

2
We can evaluate Bn(x, (x− z)2):

Lemma 2.3. Bn(x, (x− z)2) = (x− z)2 + 1
n
(x− x2).

Proof. By the definition of Bernstein polynomials, we have:

Bn(x, (x− z)2 =
n∑
k=0

(
k

n
− z)2

(
n

k

)
xk(1− x)n−k

=
n∑
k=0

(
k

n
)2
(
n

k

)
xk(1− x)n−k −

n∑
k=0

(
2zk

n
)

(
n

k

)
xk(1− x)n−k +

n∑
k=0

z2
(
n

k

)
xk(1− x)n−k

=
n∑
k=0

(
k

n
)

(
n− 1

k − 1

)
xk(1− x)n−k − 2z

n∑
k=0

(
n− 1

k − 1

)
xk(1− x)n−k + z2

n∑
k=0

(
n

k

)
xk(1− x)n−k

The first two sums can start at 1 since the 0 terms evaluate to 0:

=
n∑
k=1

(
k

n
)

(
n− 1

k − 1

)
xk(1− x)n−k − 2zx

n∑
k=1

(
n− 1

k − 1

)
xk−1(1− x)n−k + z2(x+ (1− x))n

Next, we shift the indices of the first two sums down:

=
n−1∑
k=0

(
k + 1

n
)

(
n− 1

k

)
xk+1(1− x)n−k−1 − 2z

n∑
k=0

(
n− 1

k

)
xk(1− x)n−k−1 + z2

=
n−1∑
k=0

(
k

n
)

(
n− 1

k

)
xk+1(1− x)n−k−1 +

n−1∑
k=0

(
1

n
)

(
n− 1

k

)
xk+1(1− x)n−k−1 − 2zx+ z2
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We can do the same for the first sum:

=
n−1∑
k=1

(
k

n
)

(
n− 1

k

)
xk+1(1− x)n−k−1 + x

n−1∑
k=0

(
1

n
)

(
n− 1

k

)
xk(1− x)n−k−1 − 2zx+ z2

=
n−1∑
k=0

(
k + 1

n
)

(
n− 1

k − 1

)
xk+2(1− x)n−k−2 +

1

n
(x)− 2zx+ z2

=
n−1∑
k=0

(
k + 1

n
)

(
n− 1

k − 1

)
xk+2(1− x)n−k−2 +

1

n
(x)− 2zx+ z2

Using the same methods and manipulation, the above is equal to x2+ 1
n
(x−x2)−2zx+z2 =

(x− z)2 + 1
n
(x− x2). �

By Lemma 2.3, we have

Bn(x, f)− f(z) ≤ 2M

δ2
Bn(x, (x− z)2) +

ε

2

=
2M

δ2
((x− z)2 +

1

n
(x− x2)) +

ε

2
If we plug in x = z, then

Bn(z, f)− f(z) ≤ 2M

δ2
(
1

n
(x− x2)) +

ε

2

Since z − z2 ≤ 1
4

for z ∈ [0, 1],

Bn(z, f)− f(z) ≤ M

2nδ2
+
ε

2
.
n can be arbitrarily large, so we have successfully approximated f(z) for the interval [0, 1].

�

Not all measurable functions have Fourier expansions, but all continuous functions on
R/Z can be approximated by trigonometric polynomials, and all square-integrable functions
(functions that are L2 integrable) can be arbitrarily well approximated by finite trigonometric
polynomials, which is a corollary of this theorem. This happens when we send x to e2πinx:

Corollary 2.4. Let f be an L2-integrable function. Then, f can be arbitrarily well approxi-
mated by a Fourier series expansion.

3. Examples

One example of how Fourier series can be used is for the rotation transformation Rα on
R/Z.

Example. Let X = R/Z and Rα be the rotation defined by Rα(x) = x+ α, where α ∈ R\Q.
Let f be a measurable and L2 integrable function. Then, if the Fourier series of f is

f(x) =
∑
n∈Z

ane
2πinx

Then the Fourier series of f ◦Rα is:
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f(x) =
∑
n∈Z

ane
2πin(x+α)

=
∑
n∈Z

(ane
2πinα)e2πinx

Comparing the coefficients, ane
2πinα = an. Since e2πinα cannot be 1 unless n = 0, this

means that an = 0 for n ∈ Z, n 6= 0, which means that f is constant almost everywhere.
This implies that f is ergodic.

Another example is the doubling map, which uses the Riemann Lebesgue Lemma. Note
that this can be generalized to any transformation T (x) = βx− bβxc:

Example. Let X = R/Z and let T (x) = 2x (mod 1). Suppose f is a measurable and L2

integrable function. Then, if the Fourier series of f is:

f(x) =
∑
n∈Z

ane
2πinx

Then the Fourier series of f ◦ T j for some nonnegative integer j is:

f(x) =
∑
n∈Z

ane
2πin(x)(2j)

=
∑

n∈Z(an(2j))e
2πinx

By comparing the coefficients, we get an = a2jn. These coefficients will approach 0 as j
approaches infinity, which implies that f is constant almost everywhere. Thus, T is ergodic.
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