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Abstract

It is essential in mathematics to be able to approximate functions with other
functional constructions that are easier to work with. It is also useful to define the
constraints which a function must follow for it to be able to be approximated by
such constructions. Such is what was accomplished by Karl Weierstraß and Mar-
shall Stone in the Stone-Weierstraß Theorem, which proves that if X is a compact
Hausdorff space, a function f : X → R need only be continuous to be approx-
imated arbitrarily well by polynomials. The Weierstraß Approximation Theorem
asserts that such functions can be approximated well by algebraic and trigonometric
polynomials, and is essential in the use of Fourier Analysis to prove the ergodic-
ity of measure-preserving transformations. Equipped with the Stone-Weierstraß
Theorem, the Fourier Series can simplify many problems on R/Z, and prove the
ergodicity of other measure-preserving transformations.

1 Fourier Analysis

Definition 1. Fourier Series
The Fourier Series, developed by French mathematician Joseph Fourier, is a method

to globally approximate periodic functions. Let an and bn be coefficients, the values of
which will be determined later. Then, the Fourier Series is given by the infinite sum of a
configuration of sines and cosines, denoted:

F (x) = a0 +
∞∑
n=1

an cos(nx) + bn sin(nx)

The intuition behind the Fourier Series is that there exists some sum of trigonomet-
ric functions, appropriately vertically shifted by some constant a0, which have varying
frequencies. The infinite sum of such functions will then approximate another periodic
function arbitrarily well. The coefficient of the x inside the trigonometric functions,
which is n, varies as the infinite sum progresses, and thus produces the varying frequen-
cies necessary to approximate other functions. However, the trigonometric functions with
varying frequencies each need to be scaled and weighted accordingly to produce the de-
sired function. Such is the motivation for the coefficients an and bn. We now generalize
the Fourier Series to a function with period 2T .
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Proposition 1. The Fourier Series of a function F (x) which has period 2T , or frequency
f , is given by

F (x) = a0 +
∞∑
n=1

an cos
(πnx
T

)
+ bn sin

(πnx
T

)
or

F (x) = a0 +
∞∑
n=1

an cos(2πnfx) + bn sin(2πnfx).

Proof. We begin the proof by performing a change of variables. Let the variable y
be defined as y = πx

T
. Then, let the function h(y) be defined as:

h(y) = F (x).

Then, we have h(y) = F (Tt
π

). It is easy to see, due to the change of variables, that the
function h has period 2π. Then, it is possible to represent h through a Fourier Series,
given by

h(y) = a0 +
∞∑
n=1

an cos(ny) + bn sin(ny).

Reverting to the variable x by noting that y = πx
T

, and using h(y) = f(x), we have

F (x) = a0 +
∞∑
n=1

an cos(
πnx

T
) + bn sin(

πnx

T
)

for the Fourier Series of a period-2T function. This Fourier Series can also be written in
terms of the frequency f instead of the period 2T , in which case it becomes

F (x) = a0 +
∞∑
n=1

an cos(2πnfx) + bn sin(2πnfx)

�

Proposition 2. The vertical shift term a0 is given by

a0 =
1

2T

∫ 2T

0

F (x)dx.

Proof. Let F (x) be some function which has period 2π. To determine the constant
vertical shift a0, we begin by integrating both sides of the Fourier Series of F (x). Then,
we have ∫ 2π

0

F (x)dx =

∫ 2π

0

a0dx+

∫ 2π

0

∞∑
n=1

[
an cos(nx) + bn sin(nx)

]
dx

= 2πa0 +
∞∑
n=1

an

∫ 2π

0

cos(nx)dx+
∞∑
n=1

an

∫ 2π

0

sin(nx)dx.

Since for ∀n ∈ Z the expression
∫ 2π

0
cosnxdx evaluates to 0, the second term in the above

equation becomes zero. The integral
∫ 2π

0
sin(nx)dx also evaluates to zero for all integer

n, so the only nonzero term in the above equation is 2πa0. Then, we have∫ 2π

0

F (x)dx = 2πa0.
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Rearranging terms, we have

a0 =
1

2π

∫ 2π

0

F (x)dx.

However, this is only true for functions which have period 2π. To generalize the solution
for a0 to a function with an arbitrary period 2T , we must make a change of variables.
Let the variable y be defined as y = πx

T
, and the function h(y) be defined as h(y) = f(x).

Note that h(y) has period 2π. Then, when x becomes integer multiples of T , y reaches
integer multiples of π. Writing out the a0 term of the Fourier Series of h(y), we have

a0 =
1

2π

∫ 2π

0

h(y)dy.

Reverting to the variable x and the function F (x) and changing the limits and coefficients
accordingly, we have

a0 =
1

2T

∫ 2T

0

F (x)dx

for the generalized solution to a0. �

Proposition 3. The Fourier Coefficient of the nth cosine function in the infinite sum is
given by

an =
1

T

∫ 2T

0

F (x) cos
(πnx
T

)
dx.

Proof. We derive the Fourier Coefficient of the nth cosine function in the Fourier
Series of F (x) by first multiplying both sides of the Fourier Series by cos(kx), where k is
some positive integer. Then, we have

F (x) cos(kx) = a0 cos(kx) + cos(kx)
∞∑
n=1

an cos(nx) + bn sin(nx).

After integrating both sides, we see that
∫ 2π

0
F (x) cos(kx)dx is equal to:

a0

∫ 2π

0

cos(kx)dx+ an

∞∑
n=1

∫ 2π

0

cos(nx) cos(kx)dx+ bn

∞∑
n=1

∫ 2π

0

sin(nx) cos(kx)dx.

Since
∫ 2π

0
cos(kx)dx = 0, the first term can be forgotten. Now, note that the integral

of the product of cosines,
∫ 2π

0
cos(nx) cos(kx)dx, is equal to 0 for all integer n and k such

that n 6= k.1 When n = k, the integral evaluates to π. On the other hand, the expression∫ 2π

0
sin(nx) cos(kx)dx evaluates to zero for all integer n and k regardless of whether or

not n = k.2 Then, the last nonzero term remaining is akπ. After forgetting the zero
terms, we see that ∫ 2π

0

F (x) cos(kx)dx = akπ.

1The evaluation of this integral is accomplished by using the product-to-sum formulas, one of which

shows that
∫ 2π

0
cos(nx) cos(kx)dx = 0 can be simplified to 1

2

∫ 2π

0
cos(nx + kx) + cos(nx − kx)dx, which

also evaluates to zero.
2Again, the use of one of the product-to-sum formulas facilitates the evaluation of this integral. The

integral simplifies to 1
2

∫ 2π

0
sin(nx + kx) + sin(nx− kx)dx, which evaluates to zero for all n, k ∈ Z+.
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After exchanging n for k in both cos(kx) and ak and rearranging terms, we have

an =
1

π

∫ 2π

0

F (x) cos(nx)dx.

Steps similar to those taken during the generalization of the a0 term are used to general-
ized an to a function with arbitrary period 2T . After the implementation of the change
of variables given by y = πx

T
and h(y) = F (x), the Fourier Series of h(y) is

h(y) = a0 +
∞∑
n=1

an cos(ny) + bn sin(ny),

and the an term is given by

an =
1

π

∫ 2π

0

h(y) cos(ny)dy.

We now revert to old variables, use the function F instead of h, and change limits
accordingly. Then, we have:

an =
1

T

∫ 2T

0

F (x) cos(
πnx

T
)dx,

thus ending the derivation of the generalized solution to an. �

Proposition 4. The Fourier Coefficient of the nth sine function in the infinite sum is
given by

bn =
1

T

∫ 2T

0

F (x) sin
(πnx
T

)
dx.

Note that b0 is defined to be zero, so the above equation works for all nonzero positive
integer values of n.

Proof. An approach similar to that taken in the derivation of an is used to derive
bn. We begin by first multiplying both sides of the Fourier Series by sin(kx), where k is
some positive integer. Then,

F (x) sin(kx) = a0 sin(kx) + sin(kx)
∞∑
n=1

an cos(nx) + bn sin(nx).

Integrals are taken on both sides of the equation, to yield:∫ 2π

0

F (x) sin(kx)dx = a0

∫ 2π

0

sin(kx) +
∞∑
n=1

an

∫ 2π

0

cos(nx) sin(kx)

+
∞∑
n=1

bn

∫ 2π

0

sin(nx) sin(kx)dx.

The integrals a0
∫ 2π

0
sin(kx) and

∑∞
n=1 an

∫ 2π

0
cos(nx) sin(kx) both evaluate to zero, so

they can be forgotten. The integral
∑∞

n=1 bn
∫ 2π

0
sin(nx) sin(kx)dx also evaluates to zero,

but takes a nonzero value when n = k, which is π. Thus,∫ 2π

0

F (x) sin(kx)dx = πbk.
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Rearranging terms and exchanging n for k, we have:

bn =
1

π

∫ 2π

0

F (x) sin(nx)dx.

Since this holds true only for functions with period 2π, it is necessary to generalize the
formula to fit a function with arbitrary degree 2T . An approach similar to those taken
to generalize a0 and an will be used here. Recall the change of variables y = πx

T
and the

definition of the function h(y) = F (x). The Fourier Series of h(y) is given by

h(y) = a0 +
∞∑
n=1

an cos(ny) + bn sin(ny),

and the bn term is calculated using the fact that

bn =
1

π

∫ 2π

0

h(y) sin(ny)dy

Conducting the reversion to the variable x, writing the expression in terms of F (x), and
changing the limits and coefficients accordingly, we have

bn =
1

T

∫ 2T

0

F (x) sin(
πnx

T
)dx

for the generalized solution to the Fourier Coefficient bn. �

Definition 2. The Complex Fourier Series
The Complex Fourier Series is simply another representation of the regular Fourier

Series. However, the Complex Fourier Series is much easier to work with, for it expresses
the series using exponents and a single coefficient-generating function instead of trigono-
metric functions and multiple coefficients. Let f be the frequency of an arbitrary F (x).
Note that if 2T is the period of F , then f = 1

2T
. The Complex Fourier Series of a function

F (x) with frequency f is given by:

F (x) =
∞∑

n=−∞

Cne
2πinfx.

The Fourier Coefficient function Cn will be defined in the derivation below.
Derivation. Before giving the derivation of the Complex Fourier Series, we will need

to establish a few preliminaries.

(i) Euler’s formula is given by eiφ = cos(φ) + i sin(φ). Adding e−iφ to both sides of the
equation, we have

cos(φ) =
eiφ + e−iφ

2
.

(ii) Similarly, it is possible to isolate sin(φ) from Euler’s formula. Subtracting e−iφ from
both sides of the equation, we have

sin(φ) =
eiφ − e−iφ

2i
.
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Now that the preliminary material has been established, we can move on with the
derivation of the Complex Fourier Series. Proposition 1 shows that the Fourier Series of
a function with frequency f is given by

F (x) = a0 +
∞∑
n=1

an cos(2πnfx) + bn sin(2πnfx)

Here, we make the substitutions cos(φ) = eiφ+e−iφ

2
and sin(φ) = eiφ−e−iφ

2i
for φ = 2πnfx.

Then, we have

F (x) = a0 +
∞∑
n=1

[
an(e2πinfx + e−2πinfx)

2
+
bn(ie−2πinfx − ie2πinfx)

2

]

= a0 +
∞∑
n=1

[(an − ibn
2

)
e2πinfx

]
+
∞∑
n=1

[(an + ibn
2

)
e−2πinfx

]
Now, all coefficients are combined into a single function Cn. Then, the Complex Fourier
Series of F (x) is given by

F (x) =
∞∑

n=−∞

Cne
2πinfx.

We define the Fourier Coefficient function Cn as

Cn =


1
2
(a|n| + ib|n|) for n < 0

1
2
(a0) for n = 0

1
2
(an − ibn) for n > 0

 = 〈F (x)e−2πinfx〉 =
1

2T

∫ 2T

0

F (x)e−2πinfxdx.

�
The Fourier Series is extremely useful in Ergodic Theory, since it can be used in

conjunction with certain theorems to prove that measure-preserving transformations are
ergodic. The Fourier Series is similar to the Taylor Series, which approximates highly dif-
ferentiable functions arbitrarily well over closed intervals (locally). However, the Fourier
Series is more versatile than the Taylor Series when working with periodic functions, for
it approximates functions globally, and does not require the functions it approximates to
be highly differentiable. It is important to prove that certain functions can be approx-
imated arbitrarily well by other functional constructions before using Fourier Analysis
to approximate certain measure-preserving transformations in order to prove results in
Ergodic Theory. A special result of the Stone-Weierstraß Theorem, the Weierstraß Ap-
proximation Theorem, accomplishes precisely this. However, we will need to establish
some groundwork before discussing the Stone-Weierstraß Theorem and its useful results.

2 The Stone-Weierstraß Theorem

Definition 3. Algebra
An algebra A is a vector space in R equipped with a multiplication operation. More

formally, an algebra is a vector space in R with an associative bilinear product, denoted
p : A×A → A.
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Definition 4. Sub-algebra
A sub-algebra is a subset of an algebra which, in turn, also satisfies the conditions

required to be labelled an algebra under the same operations. An alternate definition of a
sub-algebra also exists; a sub-algebra is a sub-ring A ⊂ C[x1, x2] if for ∀f, g ∈ A : fg ∈ A.
A sub-algebra is unital if the aforementioned operation p : A × A → A has an identity
element.

Definition 5. Separating Points
A sub-ring, or a set of functions F separates points if ∀x, y : x 6= y : ∃f ∈ F such that

f(x) 6= f(y).

Definition 6. Convolution
Let f : R→ R be an arbitrary smooth function, and let g : [a, b]→ R be a continuous

function over the interval [a, b]. A convolution of two functions f and g, denoted f ∗g = h,
is given by

h(x) =

∫ b

a

f(x− z)g(z)dz.

The convolution of two such functions is commutative, and is also a smooth function.

Theorem 1. The Stone-Weierstraß Theorem
Let X be a compact metric space and A ⊂ C(X,R) be a unital sub-algebra that

separates points of X. Then X is dense in C(X,R). This is equivalent to the statement
that if A ⊂ C(X,R) and A is a sub-algebra that contains a non-zero constant function,
then A is dense in C(X,R) if and only if it separates points of compact set X.

Proof. It will be proved in the work that follows that smooth functions can approx-
imate continuous functions arbitrarily well over closed intervals. This will be done by
proving the existence of a smooth function f such that the convolution of f and g, the
function being approximated, gets arbitrarily close to g. This is accomplished by flatten-
ing, or distributing the weight of the function f , more equally over the interval on which
g is defined.

Let g : [a, b]→ R be a continuous function over the interval [a, b]; this is the function
that will be approximated by smooth functions. Then let f : R→ R be a smooth function
that has a value of 0 everywhere but in the interval [a, b], over which the function is
positive. Suppose that the average of the function’s ”weight” over the interval [a, b] is 1;
in other words, ∫ b

a

f(x)dx = 1.

It is possible to state the function f more specifically; let k(x) be defined such that

k(x) =

{
e−2(x

2+1), for x ∈ [−1, 1]
0, else

}
It is true, then, that k is a smooth function, that k is non-negative over the interval
[−1, 1], and that k = 0 everywhere else. Thus, there exists an explicitly stated function

that satisfies the criteria given for the function f . Next, let the function fn(x) =
f( x
n
)

n
,

and
∫ b
a
fn(x) = 1 as well. Note that as n tends to∞, the graph of fn becomes more even,

and the weight over the interval [a, b] becomes more equally distributed. Note that the
function g is uniformly continuous over the closed interval [a, b]. This, then, implies that
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for some ε > 0 and all x, y ∈ [a, b], ∃δ > 0 : |f(x)− f(y)| < ε, for |x− y| < δ. Using the
commutativity of fn ∗ g, we have

|(fn ∗ g)− g(x)| =
∣∣∣∣ ∫ b

a

fn(z)g(x− z)dz − g(x)

∫ b

a

fn(z)dz

∣∣∣∣.
Then, by the triangle inequality, we have∣∣∣∣ ∫ b

a

fn(z)g(x− z)dz − g(x)

∫ b

a

fn(z)dz

∣∣∣∣ ≤ ∫ b

a

|fn(z)||g(x− z)− g(x)|dz.

Because fn is nonzero only inside the interval [ a
n
, b
n
], the limits on the integral simplifies

to a
n

and b
n
. Then, we have∫ b

a

|fn(z)||g(x− z)− g(x)|dz =

∫ b
n

a
n

|fn(z)||g(x− z)− g(x)|dz

Note that for ∀z ∈ [ a
n
, b
n
], |g(x − z) − g(x)| < ε, given that n is sufficiently large, such

that the inequality 0 < b−a
n
< δ holds. Then, for all values of x ∈ [a, b], we have

|(fn ∗ g)− g(x)| ≤
∫ b

n

a
n

|fn(z)||g(x− z)− g(x)|dz < ε

∫ b
n

a
n

|fn(z)|dz <
∫ b

a

fn(z)dz = 1.

Thus, the existence of a smooth function f such that its convolution with g approximates
g arbitrarily well is proven. It follows from this result that all continuous functions can
be approximated by smooth functions arbitrarily well. �

Theorem 2. The Weierstraß Approximation Theorem
Let C(R,R) denote the space of all continuous real valued functions mapping from

R → R, and let P denote the set of all real-valued polynomials such that for every
polynomial p ∈ P, we have p ∈ C(R,R). Then, P is dense in C(R,R).

Proof. By the definition of a polynomial, f, g ∈ P implies that both f + g and
f · g are polynomials, and thus are in P. Therefore, due to closure under the additive
and multiplicative operations, P is a sub-algebra of C(R,R). Moreover, P contains all
constants, as constants are simply degree zero polynomials. Next, we must prove that P
separates points. Let a, b ∈ R. Consider the polynomial given by f(x) = x − a. Then,
f(a) = 0, and f(b) = b − a. Thus, f(a) 6= f(b), so P separates points. Then, by the
Stone-Weierstraß Theorem, P is dense in C(R,R). �

Theorem 3. The Approximation Theorem for Trigonometric Polynomials
The Weierstraß Approximation Theorem can also be extended to describe the density

of trigonometric polynomials in the set of all real-valued functions having period x2 −
x1 and continuous over [x1, x2]. Let C̃[x1, x2] represent the aforementioned set. Then,
trigonometric polynomials are dense in C̃[0, 2π]. Trigonometric polynomials can then
approximate periodic functions arbitrarily well. In other words, if f ∈ C̃[0, 2π], then for
∀x ∈ [0, 2π], there exists some ε > 0 and a trigonometric polynomial T such that

|f(x)− T (x)| < ε

Proof. Since trigonometric polynomials are smooth, and since the Stone-Weierstraß
Theorem proves that smooth functions have the ability to approximate continuous real-
valued functions arbitrarily well, trigonometric polynomials can approximate all functions
in C̃[x1, x2] arbitrarily well. �
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This result of the Weierstraß Approximation Theorem is indispensable, for it allows
the use of Fourier Series to approximate and prove the ergodicity of certain transforma-
tions.

3 Rotations and Other Transformations

Proposition 5. The circle rotation Rα : R/Z→ R/Z is λ-preserving for all α ∈ R.
Proof. Let the transformation Rα(x) = (x+α) mod 1. For simplicity, we will rename

this rotational transformation as T . Then, we must prove that if A = [a, b] such that
a, b ∈ [0, 1),

λ(T−1(A)) = λ(A).

It is easy to see that λ(A) = b− a, and λ(T−1(A)) follows similarly. Note that

T−1(A) = T−1
(

[a, b]
)

= [a− α, b− α]

Then, we have

λ

(
T−1(A)

)
= (b− α)− (a− α) = b− a.

Thus, both λ(A) and λ(T−1(A)) equal b − a. Thus, the rotation T preserves Lebesgue
measure λ. �

Proposition 6. The Lebesgue measure is Rα-invariant.
Proof. For simplicity, we will be using T to replace Rα. Recall the definition of

T -invariant measures: λ is T -invariant if for all real-valued continuous functions f ,∫
f ◦ Tdλ =

∫
fdλ.

Then, let f have the Fourier Series

∞∑
n=−∞

cne
2πinx.

Then, f ◦ T has the Fourier Series

∞∑
n=−∞

cne
2πinxe2πinα.

We now take the integrals of f and f ◦ T with respect to λ.∫
fdλ =

∫ ∞∑
n=−∞

cne
2πinxdλ =

∞∑
n=−∞

cn

∫
e2πinxdλ

Note that
∫
e2πinxdλ = 0 for all n except for n = 0, at which the integral evaluates to

one. Using this, we have: ∫
fdλ = c0.
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Now we shall begin integrating f ◦ T .∫
f ◦ Tdλ =

∫ ∞∑
n=−∞

cne
2πinxe2πinαdλ =

∞∑
n=−∞

cne
2πinα

∫
e2πinxdλ

Again, we use the fact that
∫
e2πinxdλ behaves like the point mass at zero. Then, we have∫

f ◦ Tdλ = c0.

Both
∫
fdλ and

∫
f ◦ Tdλ equal c0, and are thus equal to each other. Thus, λ is Rα-

invariant. �

Proposition 7. Rα is ergodic for all α /∈ Q.
Proof. We prove the ergodicity of irrational rotations on R/Z by proving that every

Rα-invariant measurable function is constant everywhere. Let α /∈ Q and f ∈ L2 be
Rα-invariant. Then, let f have the Fourier Series

f(x) =
∞∑

n=−∞

cne
2πinx

This implies that f ◦Rα has the Fourier Series

f ◦Rα =
∞∑

n=−∞

cne
2πin(x+α) =

∞∑
n=−∞

cne
2πinxe2πinα

Since we assume f to be Rα-invariant, f ◦Rα(x) must be equal to f(x). Then, we have:

∞∑
n=−∞

cne
2πinx =

∞∑
n=−∞

cne
2πinxe2πinα

By comparing Fourier Coefficients, we have:

cn = cne
2πinα

There exist two possibilities: either e2πinα = 1, or cn = 0. Since n only equals 0 in one
instance and α 6= 0 because α /∈ Q, e2πinα 6= 1. So, cn must equal 0 whenever n 6= 0.
When n = 0, the first term, c0, appears. Since all terms of the Fourier Series of f are 0
save for c0, f is constant almost everywhere. Thus, Rα for all α /∈ Q is ergodic.

We now prove that rational rotations on R/Z are not ergodic by providing an example
of a Rα-invariant function which is not constant. Let α = a

b
, where a, b ∈ Z. Then, let

f(x) = e2πibx. Then,
f ◦Rα(x) = e2πib(x+

a
b
) = e2πibxe2πia

Since a is an integer, e2πia evaluates to 1, and f ◦Rα(x) = f(x). Thus, f is Rα-invariant.
However, f is not constant. For this reason, when α ∈ Q, Rα is not ergodic. �

Proposition 8. Tα is not ergodic if α ∈ Q.
We now prove that rational rotations on R/Z are not ergodic by providing an example

of a Rα-invariant function which is not constant. Let α = a
b
, where a, b ∈ Z. Then, let

f(x) = e2πibx. Then,
f ◦Rα(x) = e2πib(x+

a
b
) = e2πibxe2πia

Since a is an integer, e2πia evaluates to 1, and f ◦Rα(x) = f(x). Thus, f is Rα-invariant.
However, f is not constant. For this reason, when α ∈ Q, Rα is not ergodic. �
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Proposition 9. The doubling transformation, given by T (x) = 2x (mod 1), is ergodic.
Proof. Let the doubling transformation T : X → X be defined as

T (x) = 2x (mod 1).

We wish to again use the fact that T is ergodic if and only if every T -invariant function
is constant almost everywhere. Then we again look for f such that f ◦ T is equal to f .
We can let f(x) have the Fourier Series given by

f(x) =
∞∑

n=−∞

cne
2πinx.

Then, for any p > 0, we have that f ◦ T p could be represented by

f ◦ T p =
∞∑

n=−∞

cne
2πin2px.

Then, by comparing the Fourier Coefficients of both f ◦ T and f ◦ T p, we have that
cn = c2p∗n. The Riemann-Lebesgue Lemma states that cn → 0 as |n| → ∞. This implies
that for all n 6= 0, cn = 0. If this is true, the function is equal to 0 everywhere except for
c0. So, the functions are constant almost everywhere. This implies that T is ergodic. �
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