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1. Introduction

Concepts from measure theory can be applied to probability to deal with random functions
and their properties. In statistics, the Cumulative Distribution Function can only be used
on continuous sets. However, there is an equivalence between the Borel Measure and the
Cumulative Distribution Function which can be used to find the distribution of random
variables.

2. Probability Measures

To do probability, it is a good idea to define a probability measure and probability measure
space. This concrete definition makes it easier to see the correlation with CDFs and Borel
Probability Measures that will come later.

Definition 2.1 (Probability Space). A probability space is a measurable space with a total
measure of 1. (Ω,F ,P) is a probability space.

• Ω is a set or sample space. Elements in Ω are written as ω
• F is a σ-algebra on Ω
• P is a probability measure

Definition 2.2 (Probability Measure). A Probability Measure is just a normal measure
with a total length of one. In other words: P : F → [0, 1]. To be a probability measure, P
has to fulfill three properties:

(1) P(∅)=0
(2) P(Ω)=1
(3) If A1, A2, . . . An are finite or countable collection of subsets of F such that Ai∩Aj = ∅

for all i 6= j, then

P

(⋃
n

An

)
=
∑
n

P(An).

P(A) is called the ”probability of A”.

3. Random Variables

A random variable is a function, not a variable. A random variable gives a numerical
value for a particular outcome. It is a function that goes from the sample space to the real
numbers. In this paper, X(ω) will represent the value of the random X when the outcome
is ω.
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One use of a random variable is to find the probability that the outcome is no larger
that some value c. However, to have a probability assigned on the set, the set needs to be
F -measurable.

Most random variables take values in the real line. In this case B is the Borel σ-algebra.
Sometimes random variables have values on the extended real line, R = R∪ {−∞,∞}. The
Borel σ-algebra on R is the smallest σ-algebra that contains all the Borel subsets of R and
the sets {−∞} and {∞}.

Definition 3.1 (Random Variables). Let (Ω, F) be a measurable space. A function : Ω→ R
is a random variable if the set {ω | X(ω) ≤ c} is F -measurable for every c ∈ R

Definition 3.2 (Extended-Valued Random Variables). Let (Ω, F) be a measurable space.
A function : Ω → R is a extended-valued random variable if the set {ω | X(ω) ≤ c} is
F -measurable for every c ∈ R

Example (Indicator Function). Suppose A ∈ Ω and IA : Ω→ {0, 1} is the indicator function
of this set. This means that IA(ω) = 1 if ω ∈ A and IA(ω) = 0 if ω /∈ A. If A ∈ F , then IA
is a random variable because the set is F measurable. However, if A /∈ F , then IA is not a
random variable.

For any random variable X, {ω | X(ω) ≤ c} is the event that X ≤ c. This can be written
as {X ≤ c}. This probability is defined because the event belongs to F . This probability
can be generalized with a subset B, which is a more general subset of the real line. The set
{ω | X(ω) ≤ B} is denoted by X−1(B) or {X ∈ B}.

Borel σ-algebras can be generated by the collection of intervals in the form (−∞, c]. If
X is a random variable, then for any Borel set B, the set X−1(B) is F -measurable. The
probability of this event is well defined. P(X−1(B)) = P({ω | X(ω) ≤ c}).

Definition 3.3 (Probability Law). Let (Ω,F ,P) be the probability space and let X :→ R
be a random variable

(1) For every Borel subset B on the real line, define PX(B) = P(X ∈ B)
(2) This function PX goes from B → [0, 1] and is called the probability law of X

Something to notice is that the probability law PX is a measure on (R,B) while the
probability measure P is a measure on (Ω,F). In statistics, it is easier to work with the
probability space (R,B,PX) rather than the original probability space (Ω,F ,P)

Proposition 3.4. If (Ω,F ,P) is a probability space and X is a random variable. Then PX

is a measure on (R,B).

Proof. For every Borel set B, PX(B) ≥ 0. Also, PX(R) = P(X ∈ R) = P(Ω) = 1.
Now, we need to prove that the probability law is countably additive. Let {Bi} be a

countable sequence of disjoind Borel subsets of R. This means that the sets X−1(Bi) are
also disjoint.

X−1(
⋃∞

i=1Bi) =
⋃∞

i=1X
−1(Bi)

This means that:

{X ∈
⋃∞

i=1Bi} =
⋃∞

i=1{X ∈ (Bi)}
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Because our original probability space is countable additive, we can use that to prove that
the probability law is countable additive.

PX(
⋃∞

i=1Bi) = P(X ∈
⋃∞

i=1Bi) =
∑∞

i=1 P(X ∈ Bi) =
∑∞

i=1 PX(Bi)
�

Now that we have probability measure spaces, probability measures, and probability laws,
it is important to define a measurable function.

Definition 3.5 (Measurable Functions). If (Ω1,F1) and (Ω2,F2) are two measurable spaces,
a function f : Ω1 → Ω2 is (F1,F2)-measurable if f−1(B) ∈ F2 for every B ∈ F2

This definition implies that a random variable X is (F ,B)-measurable and X : Ω → R.
In general, functions that are constructed from other functions are measurable.

4. Cumulative Distribution Functions

A cumulative distribution function, or distribution function, of a random variable is the
probability that the random variable will take a value less than or equal to some value x.With
continuous sets, the cumulative distribution function is defined using an integral. The CDF is
FX =

∫ x

−∞ fX(t)dt where fX is a function whose value at any point gives the probability that
the value of the function will equal that sample. The definition of cumulative distribution
functions can be generalized for all random variables

Definition 4.1 (Cumulative distribution function). Let X be a random variable and let FX

be the cumulative distribution function. FX : R→ [0,1], is defined by:
FX(x) = P(X ≤ x)

Example (Uniform random variable). Let (Ω,B,P) be the probability space, where Ω = [0, 1],
B is the Borel σ-algebra and P is the Lebesgue measure. Define a random variable U as
U(ω) = ω.

FU(x) =


1 x≥ 1,

x 0≤ x ≤ 1

0 x≤ 0

FU(x) = P(U ≤ x) So U is a cumulative distribution function.

All Cumulative Distributions functions have some properties. Let F be a Cumulative
Distribution Function on a random variable X

(1) Monotonicity if a ≤ b, the FX(a) ≤ FX(b)
(2) Limiting Values limx→∞ F (x) = 1 and limx→−∞ F (x) = 0
(3) Right-Continuity limx↓a F (x) = F (a)

(1) If a ≤ b, then {X ≤ a} ⊂ {X ≤ b}. This inequality implies that:
F (x) = P(X ≤ a) ≤ P(X ≤ b) = F (b)

(2) Let xn = −n. The sequence ∩−∞n=1{X ≤ −n} converges to the empty set. Because
probabilities are continuous:
limn→∞ FX(x) = limn→∞ FX(−n) limn→∞ P(X ≤ −n) = P(∅) = 0
This proves that every sequence that approaches negative infinity is bounded by 0.
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To prove that cumulative distribution functions have an upper bound of 1, notice
that The sequence ∩∞n=1X ≤ n converges to the full set.
limn→∞ FX(x) = limn→∞ FX(n) = limn→∞ P(X ≤ n) = P(Ω) = 1
This completes the proof for the limiting values

(3) To prove right-continuity, we need to look at a decreasing sequence {xn} that con-
verges to x. This means that the sequence {X ≤ xn} is also decreasing because the
value of the random variable decreases as the upper bound decreases. This idea can
be written as

⋂∞
n=1{X ≤ xn} = {X ≤ x}. Using continuity of probabilities:

limn→∞ FX(x) = limn→∞ P(X ≤ x) = P(X ≤ x) = FX(x)
This is true for every sequence xn so limb|a FX(b) = FX(a)

5. Combining CDF and Probability Law

A distribution function is a function F : R→ [0, 1] that satisfy the three properties of
a cumulative distribution function. In this section, the equivalency between the cumulative
distribution function and probability law will be proved.

In other words, if there is a given distribution function F , there must be a random variable
X on a probability space such that the CDF of X, FX , is equal to the given distribution
F . This objective can be satisfied by setting X = g(U) for a function g that goes from
(0, 1)→ R.

Given the distribution function F where F (x) = xforx ∈ (0, 1), the uniform random
variable U will work.

Theorem 5.1. Let F be a given distribution function on the probability space ([0,1], B, P),
where B is the Borel σ-algebra and P is the Lesbegue measure. Then a measurable function
X : Ω→ R exists whose CDF FX is equal to F .

This theorem says that every Borel Probability measure has a corresponding CDF.

Proof. To prove this theorem, we have to place some simpler assumptions. Assume F is a
function that is continuous and always increasing. This means that the range of F spans the
whole interval: [0.1]. Another condition is that for every y ∈ (0, 1), there has to be a unique
x = F−1(y) so F (x) = y.

Define a random variable U such that U(ω) = ω and X(ω) = F−1(ω) for every ω ∈ (0, 1).
X = F−1(U)andF (F−1(ω)) = ω for every ω ∈ (0, 1) so that F (X) = U . The assumption
was that F is strictly increasing, which means that X ≤ x if and only if F (X) ≤ F (x) or
U ≤ F (x). With this statement, the event {X ≤ x} is measurable so X is a random variable.
This means that for every x ∈ R

FX(x) = P(X ≤ x) = P(F (X) ≤ F (x)) = P(U ≤ F (x)) = F (x)
Which proves the equivalence. However, the probability law of X assigns probabilities to

all Borel sets, while the CDF only gives the probabilities of some intervals. This CDF still
has enough information to get the law of X. �

Theorem 5.2. Given a Cumulative Distribution Function FX , the probability law PX is
uniquely determined by the CDF.

This theorem says that every CDF has a corresponding Borel Probability Measure.

Proof. Let the probability space be ([0,1], B, P), where B is the Borel σ-algebra and P is the
Lesbegue measure.
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Proving the unique part is simple. Recall that the Cumulative Distribution Function goes
from R to [0,1]. Let Rx refer to subsets of R. If P and G are two Probability measures on B
that have the same distribution function, then P(Rx) = G(Rx) for all x ∈ R. The collection
of sets S = {Rx : x ∈ R} generates the Borel σ-algebra. This means that P = G

To prove that a Borel Probability Measure exists, define a function T : (0, 1)→ R

T (u) = inf{x : FX(x) ≥ u}
T is restricted to (0,1), and FX(x) converges to 0 and 1 at −∞ and

∞
respectively. In addition, T is non-decreasing, left continuous, and Borel-measurable. Thus,
µ = P(T−1) is a well-defined Borel Probability measure on R. Let FX be the distribution
function on µ.

When FX is strictly increasing and continuous, T is the inverse of F . In general, T (u) ≤ x
if and only if FX(x) ≤ u. Thus:

P(T−1(−∞, x]) = P{u ∈ (0, 1) : T (u) ≤ x}
= P{u ∈ (0, 1) : u ≤ FX(x)}

= FX(x)

�

This completes the proof of Theorem 5.2 because it shows that PX is generated by the CDF
FX . Combined, Theorem 5.1 and Theorem 5.2 prove that there is an equivalency between
Probability Measures that use the Borel sets and Cumulative Distribution Functions.
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