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1. Introduction

Lp Spaces, occasionally referred to as Lesbegue spaces, are named after Henri Lesbegue
although they were first introduced to the world from Frigyes Riesz. Lp spaces are a very im-
portant topic in mathematics, specifically analysis. This comes from the fact that Lp spaces
form a very important class of both Banach and topological vector spaces. These spaces
are very important in measure theory and probability theory and have many applications to
theoretical physics and financial statistics.

In statistics, Lp metrics help define measures of central tendency and statistical dispersion,
including mean, median, mode and standard deviation of a set of data.
Lp spaces also have great importance in Fourier Analysis. Two important theorems in

Fourier Analysis are the Hausdorff-Young Theorem and the Riesz-Thorin theorem which gets
us for the real line, Lp(R) → Lq(R) when 1 ≤ p ≤ 2 and 1

p
+ 1

q
= 1 is a consequence of the

Riesz-Thorin theorem of interpolation and Hausdorff-Young Inequality. We will investigate
this idea a bit more throughout the paper.

Lastly, Lp spaces are very important in quantum mechanics. As I will discuss more deeply
later, Hilbert and Banach Spaces are forms of all Lp spaces and L2 spaces, respectively. A
Hilbert space can generalize the notion of a Euclidean Space and extends methods of vector
algebra and calculus to infinite dimensions which is very useful in quantum mechanics.

2. Preliminary Concepts — Measures and Integrals

We will begin by defining what a measure is.

Definition 2.1. A measure is a function on a set X and a σ-algebra A, (X,A), µ : A →
[0,∞] such that µ(∅) = 0 and unions of finite or countable pairwise disjoint elements of A,
then

µ

(⋃
n

Sn

)
=
∑
n

µ(Sn).

Definition 2.2. A set X is measurable if you take a σ-algebra S where A ⊆ X and A ⊆ S.

Next, we shall define a Measure space.

Definition 2.3. Given a set X, a σ-algebra A and a measure µ on (X,A) then the triple
(X,A, µ) is a measure space.

Definition 2.4. To continue the idea of being measurable, a space, (X,A) can become a
measure space if all of the elements of A are measurable sets.

Now we will introduce the concept of an outer measure, more specifically, the Lebesgue
outer measure which will lead us to the Lebesgue Integrals.
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Definition 2.5. Given a set X, an outer measure on X is a function defined as
µ∗ : P(x)→ [0,∞]. The outer measures follows the properties of monotonicity, countable

subadditivity and the measure of a null set is 0.

Lastly we will introduce the Lebesgue Outer Measure before we talk about integrals.

Definition 2.6. The Lebesgue outer measure λ∗ on R is defined as follows. For any A ⊆ R,
let C (A) denote the set of all finite or countable sequences (xi, yi) of open intervals in R
such that

A ⊆
⋃
i

(xi, yi)

Then define

λ∗(A) = inf

{∑
i

(yi − xi) : {(xi, yi)} ∈ C (A)

}
.

Now we will define a few types of functions and the Lebesgue Integral of these functions.

Definition 2.7. An indicator function on a measure space (X,A, µ) of some set A such hat
A ∈ A, is defined to be the function

1A(x) =

{
1 x ∈ A,
0 x 6∈ A.

Definition 2.8. Let (X,A, µ) be a measure space. For A ∈ A, define the (Lebesgue) integral
of 1A to be ∫

X

1A dµ = µ(A)

Example. Let’s take the indicator function of the set of rational numbers, written as 1Q and
1R\Q. If we take the integral over a set X where X = [0, 1] then∫

X

1Q dµ = µ(Q) = 0

and ∫
X

1R\Q dµ = µ(R \Q) = 1

Next we will take a step up and learn about simple functions, basically just weighted sums
of indicator functions.

Definition 2.9. Take (X,A, µ) as a measure space. W define a simple function of f : X → R
to be a function f(x) such that

f(x) =
n∑
i=1

ci1Ai
(x)

where A1, A2, . . . , An ∈ A are finitely many subsets and c1, c2, ..., cn are real numbers.

Now, the integral over a simple function is just an extension of the integral over an indicator
function, defined to be ∫

X

g dµ =
n∑
i=1

ciµ(Ai)
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where g is some simple function and we the ci’s and Ai’s are what we defined using definition
2.7.

Next, let’s generalize to the Lebesgue integral over any function. The Lebesgue integral is
defined to be ∫

X

f dµ = sup

{∫
X

s dµ : s is simple and s(x) ≤ f(x) for all x

}
This holds if f : X → R≥0.
Finally, Lebesgue Integrals contain some very nice properties including monotonicity. Let’s

take a look at a couple other nice properties of Lebesgue Integrals.

• If f and g are simple functions, and α, β ∈ R, then we have∫
X

(αf + βg) dµ = α

∫
X

f dµ+ β

∫
X

g dµ,

Then, and if f(x) ≤ g(x) for all x ∈ X, then∫
X

f dµ ≤
∫
X

g dµ

• The Cauchy-Schwarz inequality holds for Lebesgue integral, as(∫
X

fg dµ

)2

≤
(∫

X

f 2 dµ

)(∫
X

g2 dµ

)
As we saw earlier we have to take integrals of functions which are non-negative, but to

get around that we can break up our function f into a difference of two functions where
f = f+ − f−. An f+ function is defined as f+(x) = max(f(x), 0) while an f− function is
defined as f−(x) = max(0,−f(x)). Now we have our integral of f equal to∫

X

f dµ =

∫
X

f+ dµ−
∫
X

f− dµ.

.

3. What are Lp Spaces

Now that we have introduced the key concepts behind Lp spaces, we can finally discuss
the main topic of this paper, Lp Spaces.

Definition 3.1. An Lp Space is a function space where the p-th power of the absolute value
of a function is Lebesgue Integrable with finite measure.

Please note that from now on, (X,A, µ) denotes a measure space where X has finite
measure, A denotes the σ-algebra of measurable sets and µ is a measure.

Remark 3.2. We write the Lp Spaces as either Lp(X,A, µ), Lp(X,µ) Lp(x) or just plainly,
Lp when the measure space has been explicitly specified.

Definition 3.3. If f ∈ Lp(X,A, µ) then f ’s Lp norm is defined as

‖fp‖ = (

∫
X

|f(x)|p dµ)
1
p

L1 is the space of all Lebesgue-integrable functions of X.

Remark 3.4. The Lp space is a vector space, so the following properties hold:
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• (f + g)(x) = f(x) + g(x)
• (λf)(x) = λf(x)

Definition 3.5. Essential Supremum Given a measurable function f : X → R, where
(X,α, µ) is a measure space, the essential supremum is the smallest number α such that the
set {x : f(x) > α} has measure zero. If no such number exists, as in the case of f(x) = 1/x
on (0, 1), then the essential supremum is ∞.

Definition 3.6. The L∞ norm is defined to be ess sup(f) where ess sup is the essential
supremum.

Remark 3.7. If we integrate over Z with respect to the counting measure, µ(x) =|x| then
we will get a discrete Lp space, where we will get measureable functions which are simply

sequences f = (an)n∈Z of complex numbers and we would have ‖f‖p= (
∑∞

n=−∞|an|p)
1
p .

Definition 3.8. Let p and q be two exponents between 1 and ∞. If 1
p

+ 1
q

= 1 then p and q

are referred to as dual exponents, but some people refer to them as conjugate exponents.

Using this definition we can now define Hölder’s Inequality.

Theorem 3.9. (Hölder’s Inequality)
Let p and q be dual exponents between 1 and ∞. If f ∈ Lp and g ∈ Lq, then fg ∈ L1 and
‖fg‖1≤‖f‖p·‖g‖q.

In order to prove this, we first must use a lemma, Young’s inequality.

Lemma 3.10. (Young’s Inequality)
ab ≤ ap

p
+ bq

q

Proof. Proof of Hölder’s Inequality
Let’s begin by calling A = ‖f‖p and B = ‖g‖q, where neither A nor B is equal to 0 otherwise

this would be extremely trivial. We want to apply Young’s Inequality, so a = |f |
A

and b =
|g|
B

. Now we will apply Young’s inequality and get ab = |f(x)g(x)|
AB

≤ |f(x)|p
pAp + |g(x)|q

qAq = ap

p
+ bq

q
.

1

AB

∫
X

|f(x)g(x)|dµ ≤ 1

pAp

∫
X

|f |p+ 1

qBq

∫
X

|g|qdµ
.

However, Ap =
∫
X
|f |pdµ while Bq =

∫
X
|g|qdµ, therefore we get

1

‖f‖p‖g‖q
‖fg‖1≤

1

p
+

1

q
= 1

which leads us to

‖fg‖1≤‖f‖p‖g‖q
Now, we have proved Hölder’s Inequality.

�

Now, we can prove the triangle inequality for Lp spaces, otherwise known as Minkowski’s
Inequality.

Theorem 3.11. Minkowski’s Inequality
If 1 ≤ p ≤ ∞ and f, g ∈ Lp, then f + g ∈ Lp and ‖f + g‖p≤‖f‖p+‖g‖p
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Proof. We can take the p = 1 case to obtain |f(x) + g(x)|≤|f(x)|+|g(x)| by integrating.
When p ≥ 1, we can begin by verifying that f + g ∈ Lp when both f and g belong to Lp.
Indeed,

|f(x) + g(x)|p≤ 2p(|f(x)|p + |g(x)|p)
as can be seen by considering separately the cases |f(x)| ≤|g(x)| and |g(x)| ≤|f(x)|. Next

we note that

|f(x) + g(x)|p≤|f(x)||f(x) + g(x)|p−1+|g(x)||f(x) + g(x)|p−1

If q is the conjugate exponent of p, then (p−1)q = p, so we can see that (f+g)p−1 belongs
to Lq, and therefore we can apply Hölder’s inequality to the two terms on the right-hand
side which will give us

(Eqn. A)

‖f + g‖pp ≤ ‖f‖p‖(f + g)p−1‖q + ‖g‖p|(f + g)p−1‖q
However, when we use (p− 1)q = p again, then we will get

‖(f + g)p−1‖q = ‖f + g‖
p
q
p

Taking (Eqn. A), the fact that p− p
q

= 1, and we may suppose that ‖f + g‖p ≥ 0, we find

‖f + g‖p ≤ ‖f‖p + ‖g‖p
And now we are finished with our proof of Minkowski’s Inequality.

�

4. Lp Spaces, Banach Spaces and Hilbert Spaces

In order to understand Banach spaces, we first must learn about Cauchy Sequences.

Definition 4.1. A Cauchy Sequence is a sequence whose elements become arbitrarily close
to each to each other as the sequence progresses.

To specify this definition, given any small positive distance, all but a finite number of
elements of the sequence are less than that given distance from each other.

Definition 4.2. A Banach space is a vector space X over a field R of real or C complex
numbers, which is equipped with the norm ‖·‖X and which is complete with respect to the
distance function induced by the norm.

To specify this, for every Cauchy Sequence xn in X, ∃x ∈ X so that limn→∞ xn = x, or
equivalently, limn→∞‖xn − x‖X = 0.

Remark 4.3. All Lp Spaces are Banach spaces; however, not all Banach spaces are Lp Spaces.

Now, we can start to explore the idea of a Hilbert space. Similar to the relationship
between Lp and Banach spaces, not all Banach spaces are Hilbert spaces, but all Hilbert
spaces are Banach spaces. another space which are all Banach spaces, but not all of these
spaces are Banach. In order to define a Hilbert Space we first must learn about what inner
product and inner product spaces are.
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Definition 4.4. An inner product on a complex linear space X is a map (·, ·) : X×X → C,
such that ∀x, y, z ∈ X and λ, µ ∈ C:

• (x, λy + µz) = λ(x, y) + µ(x, z) (Linear Second Argument)

• (y, x) = (x, y) (Hermitian Symmetric)
• (x, x) ≥ 0 (Nonnegative)
• (x, x) = 0 if and only if x = 0 (Positive definite)

Now we shall define an inner product space.

Definition 4.5. A linear space with an inner product is referred to as an inner product space
or a pre-Hilbert Space.

Definition 4.6. A Hilbert Space is a complete inner product space.

To add on to what we commented earlier, every Hilbert Space is a Banach space with
respect to the norm where ‖x‖ =

√
(x, x)

Remark 4.7. The L2 Space is a Hilbert Space.

This can be shown from the L2 Inner-Product with respect to the measure µ.

〈f, g〉 =

∫
X

fgdµ

.
Now, the functions in an L2 Space satisfy

〈φ | ψ〉 =

∫
X

ψφdµ

along with

• 〈φ | ψ〉 = 〈ψ | φ〉
• 〈φ | λ1ψ1 + λ2ψ2〉 = λ1〈φ | ψ1〉+ λ2〈φ | ψ2〉
• 〈λ1φ1 + λ2φ2 | ψ〉 = λ1〈φ1 | ψ〉+ λ2φ2 | ψ〉
• 〈ψ | ψ〉 ∈ R ≥ 0
• ‖〈ψ1 | ψ2〉‖2 ≤ 〈ψ1 | ψ1〉〈ψ2 | ψ2〉 (Cauchy-Schwarz Inequality)

5. Density and Completeness of Lp Spaces

Nos that we’ve discussed several interesting theorems of Lp spaces, we’re going to study
another aspect of Lp spaces, density and completeness.

Remark 5.1. The triangle inequality which we discussed in section 2, otherwise known as
Minkowski’s Inequality makes Lp into a metric space with the distance d(f, g) = ‖f − g‖p

There is an analytic fact that Lp spaces are complete which comes from the idea that
every Cauchy sequence in the norm ‖·‖ converges to some element in Lp.

Now, let’s formally prove this.

Theorem 5.2. The space Lp(X,A, µ) is complete in the norm ‖·‖p
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Proof. Let (fn)∞n=1 be a Cauchy sequence in Lp, and then take a subsequence (fnk
)∞k=1 of (fn)

with the property that ‖fnk+1
− fnk

‖p ≤ 2−k ∀k ≥ 1.
Now, let’s consider some series whose convergence can be written as

f(x) = fn1(x) +
∞∑
k=1

(fnk+1
(x)− fnk

(x))

and

g(x) = |fn1(x)|+
∞∑
k=1

|fnk+1
(x)− fnk

(x)|,

along with the partial sums

SK(f)(x) = fn1(x) +
K∑
k=1

(fnk+1
(x)− fnk

(x))

and

SK(g)(x) = |fn1(x)|+
K∑
k=1

|fnk+1
(x)− fnk

(x)|

Now, we can apply Minkowski’s Inequality which implies

‖SK(g)‖p ≤ ‖fn1‖p +
K∑
k=1

‖fnk+1
− fnk

‖p ≤ ‖fn1‖p +
K∑
k=1

2−k.

Now, if we take the limit as K goes to infinity and let K go to infinity and then apply the
monotone convergence theorem shows us that

∫
X
gpdµ ≤ ∞, so the series defining g, and

thus the series defining f converges a.e., and f ∈ Lp.
We can now show that the desired limit of the sequence fn is f . From this we can conclude

that because the (K − 1)th partial sum is fnK
,

fnK
→ f(x)a.e.x.

We also know that fnK
→ f in Lp.

For our last step, we have to conclude that fn is Cauchy. Given ε ≥ 0,∃N so that
∀n,m ≥ N we get ‖fn − fm‖p ≤ ε

2
.

If we take some nK s.t. nK ≥ N , and ‖fnK
− f‖p ≤ ε

2
, then from Minkowski’s inequality

we can get

‖fn − f‖p ≤ ‖fn − fnK
‖p + ‖fnK

− f‖p ≤ ε

whenever n ≥ N .
�
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6. The Weak Lp

For our final section, we’ll discuss the Weak Lp

Definition 6.1. Measurable Function
A function between two measurable spaces such that the preimage of any measurable set is
measurable.

We can also add to this as analogously to our definition that a function between topological
spaces is continuous if the preimage of each open set is open.

A more formal definition to this can be extended here.

Definition 6.2. Let (X,A) and (Y,B) be measurable spaces, meaning that X and Y are
sets equipped with respective σ-algebras A and B.

A function f : X → Y is said to be measurable if the preimage of E under f is in A∀E ∈ T ;
i.e.,
f−1(E) := {x ∈ X | f(x) ∈ E} ∈ A,∀E ∈ T
If f : X → Y is a measurable function we will write f : (X,A)→ (Y,B) to emphasize the

dependency on the σ-algebras A and B.

Definition 6.3. Let (X,A, µ) be a measure space, and let f be a measurable function with
real or complex values on X. The distribution function f is defined ∀t ≥ 0 by λf (t) =
µx ∈ X : |f(x)| ≥ t

Definition 6.4. Markov’s Inequality If X is a nonnegative random variable and a is a
random variable, then the probability that X is at least a is at most the expectation of X

divided by a. P (X ≥ a) ≤ E(X)
a

Remark 6.5. If f ∈ Lp for some p between 1 and ∞, then by Markov’s inequality, defined

earlier, λf (t) ≤ ‖(f)‖pp
tp

Finally, we can now define what a weak Lp is.

Definition 6.6. A function f is said to be in the weak Lp, if ∃ a constant C such that
∀t ≥ 0, λf (t) ≤ Cp

tp
.

The best constant C for this inequality is the Lp,w-norm of f , which is denoted by ‖f‖p,w =

supt≥0 tλ
1
p

f (t).

Definition 6.7. A Lorentz Space on a measure space (X,µ) is the space of complex-valued
measurable functions f on X such that the following quasinorm is finite.

To extend this,

‖f‖Lp,q(X,µ) = p
1
q ‖tµ|f | ≥ t

1
p‖Lq(R+, dt

t

where 0 ≤ p ≤ ∞ and 0 ≤ q ≤ ∞. Hence, when q ≤ ∞,

‖f‖Lp,q(X,µ) = p
1
q (

∫ ∞
0

tqµx : |f(x)| ≥ t
q
p
dt

t
)
1
q ,

but when q =∞,

‖f‖pLp,∞(X,µ) = sup
t≥0

(tpµx : |f(x)| ≥ t)
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Now, we have completed a brief overview of Lp spaces and their properties. We reviewed
the basic ideas of measure theory, discussed Lp spaces and theorems pertaining to Lp spaces
such as Hölder, Minkowski and Young’s inequalities. Furthermore, we studied the key prop-
erties of density and completeness of Lp spaces and then while learning about the weak Lp

we learned about Markov’s Inequality which is especially relevant to statistics.
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