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1. Introduction

Introduces the motivation for the Haar measure: measure with certain ”nice” properties
across all groups. Specifying what types of groups we want (must be a topological group for
measure to make sense, and must be Hausdorff and locally compact).

Measure theory gives us a good generalization of lengths to all sets; however, it requires
that we actually find a measure over a given set first. Over the real numbers, we have the
Lebesgue measure; however, the measure is not obviously easy to transfer to other types of
sets.

We seek a way to generalize the Lebesgue measure to all groups (for which the concepts
we are describing make sense). First, we specify what exactly this means.

Definition 1.1. A Topological Group is a group with a topology defined over it such that
the group operation is continuous and the ”inverse function” f(x) = x−1 is also continuous.

This is the most basic condition we need satisfied for measures to make sense at all. But
there are some other nice properties we’d like before going forward.

Definition 1.2. A space X is Hausdorff if for all x, y ∈ X, x 6= y, there exist open sets U, V
such that x ∈ U, y ∈ V, x ∩ y = 0.

In other words, a space is Hausdorff if all pairs of distinct points are separated by open
sets.

Definition 1.3. A measure space M is a topologial measure space is a measure space
(X,Σ, µ) such that X is a topological space.

Thus, we can now more precisely define what we want: A measure over a topological
group that is locally compact and Hausdorff. Or, more specifically, a measure that exists
over every locally compact Hausdorff topological group.

2. The Haar measure

The measure that satisfies these criteria is the Haar measure. To define a Haar measure,
we must first give the defnition of a regular measure.

Definition 2.1. A measure over a Hausdorff topological space is regular iff: 1. All compact
sets have finite measure 2. The measure of any set is the infimum of the measures of all open
sets containing the set. 3. The measure of any open set is the supremum of the measures of
its compact subsets.

With this definition, we can now define what it means for a measure to be Haar over a
topological group.
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Definition 2.2. A left Haar measure over a locally compact Hausdorff topological group G
is a regular, nonzero measure µ such that µ(gA) = µ(A) for all subsets A of G and all g ∈ G.

In other words, the Haar measure is invariant over the group operation for all elements of
the group.

Remark 2.3. The right Haar measure is defined the same as the left Haar measure except
that µ(Ag) = µ(A) instead of µ(gA).

This generalizes a nice property over the real numbers: translation invariance. For a good
measure over the reals, we want the measure of B = {a + k | a ∈ A} to be the same as the
measure of A. Thus, the Haar measure over G is a generalization of the Lebesgue measure
over R+, which suggests the following:

Proposition 2.4. For the group R under addition, the Lebesgue measure is a Haar measure.

Proof. Firstly, R+ satisfies the requisite conditions for having a Haar measure defined over
it: it is a topological space that is both Hausdorff and locally compact. In addition, the
Lebesgue measure is regular by its definition.

We know that the Lebesgue measure of any measurable set can be constructed from the
lengths of intervals which cover it. Since interval length is translation invariant, the Lebesgue
measure is also translation invariant. �

3. Equivalence of left and right Haar measure

Remark 3.1. In the following proofs, the σ-algebra generated by a subset S of the power set
shall be denoted σ[S].

First, we show that a right Haar measure can be constructed from a left Haar measure
and vice versa. To do this, we need the following lemma:

Lemma 3.2. Given a homeomorphism f : X → X of topological measure space (X,Σ, µ),
if A ∈ Σ, then f(A) ∈ Σ and f−1(A) ∈ Σ.

Proof. Given a subset E of the power set, we shall show that σ[f−1(E)] = f−1(σ[E]); the
lemma statement follows trivially from this.

For any A ∈ f−1(E), there exists a B ∈ E with A = f−1(B). Since B ∈ E,B ∈ σ[E], and
f−1(E) is contained in f−1(σ[E]). Since the inverse function f−1 is interchangable with the
union and complement operations, f−1(σ[E]) is closed under complementation and countable
union, making it a σ-algebra that contains f−1(E), so σ[f−1(E)] ⊆ f−1(σ[E]).

For the other direction, we define Σ to include all A with preimages in σ[f−1(E)]. For any
A ∈ E, f−1(A) ∈ f−1(E) ⊆ σ[f−1(E)], so A ∈ Σ, meaning that E ⊆ Σ. As in the above
section, f−1 is interchangable with unions and complements, meaning that Σ is a σ-algebra
containing E, so σ[E] ⊆ Σ.

Taking some A in f−1(σ[E]), A = f−1(B) for some B ∈ σE. Thus B ∈ Σ, and, by the
definition of Σ, A ∈ σ[f−1(E)]. Thus f−1(σ[E]) ⊆ σ[f−1(E)], and σ[f−1(E)] = f−1(σ[E]).

From this, because a topological measure space (X,Σ, µ) has Σ = σ[τ ] where τ is the
topology, we know that f−1(Σ) = Σ, and the lemma follows. �

With this, we can now define a measure µ′ on G given left Haar measure µ, which (following
from the lemma above) exists on the same σ-algebra as µ, and is a right Haar measure on
G.
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Lemma 3.3. If µ is a left Haar measure over a topological group G, then µ′(A) = µ(A−1)
is a right Haar measure over G.

Proof. The measure µ′ exists over the same σ-algebra as µ per the previous lemma (as
f(g) = g−1 is a homeomorphism on G). We must next prove that µ′ is regular:

1. K ⊆ G compact ⇐⇒ K−1 compact, so mu′(K) <∞.
2. The inverse of an open set is also open, so if A−1 is contained by open set U , then A is

contained by open set U−1. Thus, we have infA⊆U−1 µ′(U−1) = infA−1⊆U µ(U) = µ(A−1) =
µ′(A).

3. Likewise, for an open set A, over all compact subsets K−1, we have supK−1⊆A µ
′(K−1) =

supK⊆A−1 µ(K) = µ(A−1) = µ′(A).
All that remains is the right Haar condition itself.
We have:

µ′(Ag) = µ((Ag)−1) = µ(g−1A−1) = µ(A−1) = µ′(A).

�

Thus, left and right Haar measure are equivalent; the existence and uniquness of a left
Haar measure implies the same for right Haar measure. For the remainder of this paper,
”Haar measure” shall refer exclusively to the left Haar measure unless otherwise indicated.

4. Existence and Uniqueness

First, a lemma:

Lemma 4.1. Given an open subset U of topological group G which in turn has compact
subset K. Then, there exists some open set V , with the identity e ∈ V , such that KV ⊆ V .

Proof. For each element x ∈ K, take Wx = x−1U . Then take Vx such that VxVx ∈ Wx. The
collection xVx for all x covers K, so there exists some finite cover within that collection.
Define V as the intersection of all Vx in that finite cover.

Then, for any x ∈ K, one of the xk used in the finite cover satisfies x ∈ xkVxk
. This gives

us
xV ⊆ xkVxk

V ⊆ xkVxk
Vxk
⊆ xkWxk

= U,

yielding KV ⊆ U . �

Theorem 4.2. For all locally compact Hausdorff topological groups, there exists a Haar
measure over that group.

Proof. We first define (for subsets K and V of G with K compact and V having nonempty
interior) (K : V ) as the minimum number of elements gk of G necessary to form an open
cover of K from the union of sets gkV

o (where V o is the interior of V ).
We can then define the function µU , for an open subset U of G containing the identity,

which maps compact subsets of G to R as follows:

µU(G) =
(K : U)

(K0 : U)

where K0 is a constant compact subset of G with nonempty interior.
From here, we can take the cartesian product of intervals X = ΠK∈K[0, (K : K0)] (where
K is the set of all compact subsets of G. Then, we know that µU(K) ≤ (K : K0), because
a covering of K by U can be generated using the products of each of the elements used to
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cover K by K0 and K0 by U . This means that for each open U containing the identity, µU

can be mapped to a point in X.
Then, given some open set V containing the identity, we define C(V ) as the closure in X of

all µU for U ⊆ V . We then look at the collection of all C(V ). Since the intersection of a finite
number of open sets containing the identity must itself contain an open set containing the
identity, this collection satisfies the finite intersection property. Any collection in a compact
space that satisfies the finite intersection property must have nonempty intersection, so there
is some µ ∈ X which is contained in every C(V ). We select this µ as our measure, and shall
prove that it is Haar.

First, we know that given K1 ⊆ K2, any covering of K2 is also a covering of K1. Thus,
(K1 : U) ≤ (K2 : U) and µU . Due to how we defined X, we can consider it to contain
functions with K as their domain. Thus, we can consider the map from X to G which takes
f to f(K); since f(K) is just one of the coordinates of f , this map is continuous. Thus, the
map of f to f(K2)−f(K1) is also continuous. This means that f(K2)−f(K1) is nonnegative
not only on all µU , but on all C(V ) as well. Thus, µ(K2)− µ(K1) ≥ 0, and

µ(K1) ≤ µ(K2).

. We can do something similar for the union rule. K1 ∪K2 can be covered by combining the
covers of K1 and K2, so we know that µU(K1 ∪K2) ≤ µU(K1) + µU(K2). The map of f to
f(K2) + f(K1) − f(K1 ∪ K2) is continuous. Thus, it is nonnegative on all C(V ), yielding
µ(K2) + µ(K1)− µ(K1 ∪K2) ≥ 0 and

µ(K1 ∪K2) ≤ µ(K1) + µ(K2).

Next, we prove equality with a null intersection. First, given a µU , we take K1, K2 such
that K1U

−1 ∩K2U
−1 = Ø. Then we take the minimum set of g1, g2, g3, . . . , gn such that the

gkU cover K1∪K2, meaning that n = (K1∪K2 : U). No gkU can intersect both K1 and K2,
as that would yield glk ∈ K1U

−1 ∩K2U
−1. This means that the cover can be split into two

separate covers of K1 and K2. But (K1∪K2 : U) can be no greater than (K1 : U)+(K2 : U),
the sum of the sizes of the minimal coverings of K1 and K2. This means that the split covers
of K1 and K2 must be minimal coverings, and (K1 ∪K2 : U) = (K1 : U) + (K2 : U). This
in turn yields µU(K1 ∪K2) = µU(K1) + µU(K2). Now, we must prove the same for µ given
K1 ∩ K2 = Ø. Then we find disjoint open U1 ⊇ K1 and U2 ⊇ K2. By Lemma 4.1, there
are open V1 and V2 containing the identity such that K1V1 ⊂ U1 and K2V2 ⊂ U2. Taking
V = V1 ∩ V2, we have that K1V and K2V are disjoint. Thus K1U and K2U are disjoint for
all open U ⊆ V containing the identity, and for all such U , µU(K1∪K2) = µU(K1)+µU(K2).
Since we already know that f(K2) + f(K1)− f(K1 ∪K2) is continuous, if it is equal to 0 for
all µU , U ⊆ V , it must also be 0 for all of C(V ), including µ. Thus,

µ(K1 ∪K2) = µ(K1) + µ(K2)

if K1 ∩K2 = Ø.
With these established, we can now extend µ beyond just compact sets K.
For an open set U , µ(U) = sup{µ(K)|K ∈ K, K ⊆ U}. We can verify that this definition

is consistent when U is compact; K ⊆ U implies that µ(K) ≤ µ(U) (Trivially, this definition
retains thi property and all other measure properties proved above). Since U is one of the
valid K, the value of the supremum must be µ(U) under the initial definition is well.
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Then we can generalize further. For a subset A ⊆ G, µ(A) = inf{µU |A ⊆ U,Uopen}. We
can likewise verify this definition for A open: µA ≤ µU , but A is a valid U , so the infimum
must be equal to µ(A) under the open-set definition.

This final version of µ is regular by definition. In addition, since we have defined µU based
on a constant set K0, we know that µU(K0) = 1 for all U . Since f → f(K) is continuous,
f(K0) = 0 over all C(V ) and µ(K0) = 1, meaning that µ is a nonzero measure.

Finally, all that remains to be proven is that µ is translation invariant.
If x1, x2, . . . xn cover K, then gx1, gx2, . . . , gxn cover gK, yielding

(K : U) = (gK : U) =⇒ µU(K) = µU(gK)

for all µU . We have already established that f → f(K2)−f(K1) is continuous, which means
that f(K) = f(gK) in all C(V ), and

µ(K) = µ(gK).

�

The proof of the uniqueness of Haar measure (up to scaling) is somewhat more complicated
and requires several theorems which will not be proved here.

Theorem 4.3. Given a locally compact Hausdorff topological group G and Haar measures
µ and µ′ over G, µ′ = kµ for some positive real constant k.

Remark 4.4. Throughout this proof, references to ”measure” are respective µ unless otherwise
specified.

Proof. Since Haar measures are nonzero, there must be some subset of G with positive
measure. By regularity, this also means that there must be some compact set with positive
measure, which we call K.

We then take a nonnegative function f other than the zero function which is continuous
with compact support. Then, we define U as the preimage of the positive reals under f .
Since f is not the zero function, U is nonempty and open, so K can be covered by a finite
number n of cosets of U . Thus, we have that µ(K) ≤ nµ(U), so µ(U) > 0. This, in turn,
means that there is some a > 0 for which the set A of all g ∈ G with positive f(g) has
positive measure. The Lebesgue integral of f over A must be at least aµ(A); since f is
nonnegative, this also means that

∫
G
fdµ > 0.

We now define the function h(x, y) as follows:

h(x, y) =
f(x)g(yx)∫

G
g(tx)dµ′(t)

.

It must then be proven that h is continuous; this will not be done here. Once continuity
is proven, however, we can apply Fubini’s theorem to the double integral∫

G

∫
G

h(x, y)dµ′(y)dµ(x)

. This, along with several further manipulations, eventually yields the equation∫
G

f(x)dµ(x) =

(∫
G

g(x)dµ(x)

)(∫
G

f(y−1)∫
G
g(ty−1)dµ′(t)

dµ′(y)

)
.
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Since the second term on the right hand side does not depend on µ at all, this can be
rewritten as ∫

G

f(x)dµ(x) = C

∫
G

g(x)dµ(x)

where C is constant.
Likewise, ∫

G

f(x)dµ′(x) = C

∫
G

g(x)dµ′(x).

Since g is fixed, this yields ∫
G

fdµ′ = a

∫
G

fdµ∫
G

fdµ =

∫
G

fd

(
1

a
µ′
)
.

With this last equation, we can use the Riesz-Markov-Kakutani representation theorem,
which states that over a locally compact Hausdorff space H, a functional over CC(x) has
a unique regular measure for which it is equal to the Lebesgue integral over H for every
function in CC(x). This means that the measures µ and 1

a
µ′ are the same, or

µ′ = aµ.

�
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