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1 Introduction

(X, τ) be a topological space and A be a subset of X, then the closure of A
is denoted by A is the intersection of all closed sets containing A or all closed
super sets of A; i.e. the smallest closed set containing A.

Let X be a metric space. The closure of set A is the smallest closed set
containing A. A subset A ⊆ X is called nowhere dense in X if the interior of
the closure of A is empty. A is nowhere dense if and only if it is contained in
a closed set with empty interior. Therefore, the complement of A contains a
dense open set.

1.1 Proposition 1.1

Let X be a metric space. Then:

• Any subset of a nowhere dense set is nowhere dense.

• The closure of a nowhere dense set is nowhere dense.

• The union of finitely many nowhere dense sets is nowhere dense.

• If X has no isolated points, then every finite set is nowhere dense.

Proof. To prove the third bullet point, consider a pair of nowhere dense sets
A1 and A2, and prove that their union is nowhere dense. It is also convenient to
pass to complements, and prove that the intersection of two dense open sets V1
and V2 is dense and open (why is this equivalent?). It is trivial that V1 ∩ V2 is
open, so let us prove that it is dense. A subset is dense every nonempty open set
intersects it. So fix any nonempty open set U ⊆ X. Then U1 = U ∩ V1 is open
and nonempty (why?). And by the same reasoning, U2 = U1∩V2 = U∩(V1∩V2)
is open and nonempty as well. Since U was an arbitrary nonempty open set, we
have proven that V1 ∩ V2 is dense. To prove the fourth bullet point, it suffices
to note that a one-point set {x} is open if and only if x is an isolated point of
X; then use the second bullet point.
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1.2 Baire Category Theorem

X is a complete metric space and A1, A2, A3, . . . is a sequence of dense open

sets. Then

∞⋂
n=1

An is nonempty.

1.3 Proof of Baire Category Theorem

Pick an open ball whose closure Bε1x1 is contained in A1. Since A2 is open and
dense, Bε1x1∩A2 contains some open ball with closure Bε2x2. Since A3 is open
and dense, Bε2x2 ∩ A3 contains some open ball with closure Bε3x3. Carry on
in this process, obtaining open balls Bεnxn. such that Bεnxn ∩ An+1 contains
Bε1x1 for n = 1, 2, . . . Then (xn)∞n=1 is Cauchy. Since X is complete, there is
x ∈ X such that xn → x. Now for each n the centres xj , j ≥ n, they all lie
in Bεnxn by construction, and so x lies in the closure Bεnxn and thus in An.

Then

∞⋂
n=1

An is nonempty.

1.4 Another Proof Baire Category Theorem

We assume none of the sets An contain a nonempty open subset and construct
a Cauchy sequence that converges to a point, which lies in none of the An. By
assumption A1 does not contain a nonempty open set, and therefore its open
complement Ac1 must. In other words there must exist x1 ∈ X and 0 < ε1 < 1
such that Bx1ε1 ⊂ Ac1 By assumption, A2 does not contain a non-empty set, and
therefore there must be a point x2 in the open set Bx1

ε1 ∩Ac2 . Thus ε1 <
1
2 is

true when Bx2
ε2 ⊂ (Ac2∩Bx1

ε1). Continuing this we can make a sequence of xn
where n is greater or equal to 1 and positive reals number εn where n is greater
than or equal to one such that Bxn+1

εn+1 ⊂ (Acn∩Bxn
εn) and εn <

1
2n . Notice

by our construction Bx∞ε∞ ⊂ · · · ⊂ Bx1ε1 Here we have a sequence of nested
balls. The sequence xn where n is greater than or equal to one is Cauchy since
n,m ≥ N implies that xn, xm ∈ BxN

(εN ) and (εN ) < 1
2N

. The definition of a
Cauchy sequence is that |xm − xn| < ε for m,n > N . Hence by completeness
there exists a point x∞ ∈ X such that xn → x∞. In particular, x∞ ∈ BxN

(εN )

and therefore x∞ does not belong to An for all n ∈ N. Thus

∞⋂
n=1

An is nonempty.
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