
STONE-WEIERSTRASS THEOREM

ALEX THOLEN

1. Definitions

The Weierstrass approximation theorem states that every single continuous function on
the closed interval [a, b] can be uniformly approximated as closely as desired by a polynomial.
The Stone-Weierstrass theorem is an improvement made by Stone. It extends [a, b] to an
arbitrary compact Hausdorff space, and instead of polynomial elements more general subsets
of C(X) are considered.

Definition 1.1. A family χ of arbitrary functions on a domain X is said to be a separating
family for the domain X if, whenever x and y are distinct points of X, there is some function
f in χ with distinct values f(x), f(y) at these points.

Definition 1.2. An open cover of a space is a list of open sets where any point in the space
is in at least one of those open sets. For example, [(0, 1

2
), (1

4
, 3
4
), (5

8
, 7
8
), (13

16
, 15
16

) · · · ] is an open
cover of (0, 1).

Definition 1.3. A compact space is a space that whenever you have an open cover of the
space there is a finite length open cover consisting of only sets in the bigger open cover. For
example, any space with finitely many points is a compact space.

Definition 1.4. The linear lattice operations are addition of two lattices, multiplication of
two lattices, and multiplication of a lattice and a real number.

Definition 1.5. The two lattice operations are the lattice maximum ∪ and the lattice min-
imum ∩. They denote the maximum and minimum pointwise. For example, the minimum
and maximum of two points in the plane: (3, 6) ∪ (4, 2) = (4, 6) and (3, 6) ∩ (4, 2) = (3, 2).

Definition 1.6. Ui(χ) is the set of all functions reachable using i lattice operations of the
terms in χ. U(χ) is the set of all functions reachable using lattice operations of the terms in
χ.

Definition 1.7. The set S∗ of S is formed from all the points obtainable using ∪,∩ and
limits using points in S. For example, with the set

S = {(1, 1), (1,
1

2
), (1,

1

4
), (1,

1

8
), · · · , (1

2
, 1), (

1

4
, 1), (

1

8
, 1), · · · }

then S∗ is {( 1
2n
, 1
2m

), (0, 1
2m

), ( 1
2n
, 0), (0, 0)}for all n,m.

Definition 1.8. The set S− of S is formed by taking all points x where any open ball
centered at x must contain a point in S.

Definition 1.9. The sequence ak is defined as a1 = 1
2
, ak = 1

2

∑m+n=k
m,n≥1 aman.
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2. Theorems

Let’s begin by just looking at what is necessary to be in the set of functions reachable
using lattice operations.

Theorem 2.1. Let X be a compact space, χ the family of all continuous (necessarily
bounded) real functions on X, χ0 an arbitrary subfamily of χ, and U(χ0) the family of all
functions (necessarily continuous) generated from χ0 by the lattice operations and uniform
passage to the limit. Then, a necessary and sufficient condition for a function f in χ to be
in U(χ0) is that for all x, y ∈ X, ε > 0, there exists a function fxy obtained by applying the
lattice operations alone to χ0 and such that |f(x) − fxy(x)| < ε, |f(y) − fxy(y)| < ε. Any
function that is arbitrarily well approximated at two points can be arbitrarily well uniformly
approximated on all of X.

With this, the next two corollaries follow:

Corollary 2.2. Firstly, if χ0 has the property that for all x, y ∈ X, x 6= y and for all α, β ∈ R
there exists a function f0 in χ0 for which f0(x) = α and f0(y) = β, then U(χ0) = χ, i.e., any
continuous function on X can be uniformly approximated by lattice polynomials in functions
belonging to the prescribed family χ0. This means that we can apply Theorem 2.1 to obtain
the whole family of functions.

Corollary 2.3. Secondly, if a continuous real function f on a compact space X is the limit
of a monotonic sequence fn of continuous functions, then the sequence converges uniformly
to f .

If χ0 = U(χ0), we can say make a stronger statement about the contents of U(χ0).

Theorem 2.4. Let X be a compact space, χ the family of continuous real functions on X,
and χ0 a subfamily of χ which is closed under the lattice operations and uniform passage to
the limit. Then, χ0 is completely characterized by the group of pairs χ0(x, y)∗ = χ0(x, y)−.

There are stronger statements about U(χ0) to be made, even without knowing χ0 = U(χ0).
For example, the following theorem is one.

Theorem 2.5. Let X be a compact space, χ the family of all continuous (necessarily
bounded) real functions on X, χ0 an arbitrary subfamily of χ, and U(χ0) the family of all
functions (necessarily continuous) generated from χ0 by the linear lattice operations and uni-
form passage to the limit. Then, a necessary and sufficient condition for a function f in χ
to be in U(χ0) is that f satisfies every linear relation of the form αg(x) = βg(y), αβ ≥ 0,
which is satisfied by all functions in χ0. If χ0 is a closed linear sublattice of χ - that is, if
χ0 = U(χ0), then χ0 is characterized by the system of all the linear relations of this form
which are satisfied by every function belonging to it. The linear relations associated with an
arbitrary pair of points x, y in X must be equivalent to one of the following distinct types:

(1) g(x) = g(y) = 0
(2) g(x) = 0 or g(y) = 0
(3) g(x) = g(y)
(4) g(x) = λg(y) or g(y) = λg(x) for a unique value λ, 0 < λ < 1.

Knowing this, we can show the following four corollaries.
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Corollary 2.6. In order for U(χ0) to contain a non-vanishing constant function it is neces-
sary and sufficient that the only linear relations of the form αg(x) = βg(y), αβ > 0 satisfied
by every function in χ0 be those reducible to the form g(x) = g(y).

Corollary 2.7. In order to have U(χ0) = χ it is sufficient that the functions in χ0 satisfy
no linear relation of the form (1) - (4) of Theorem 2.5.

Corollary 2.8. If X is compact and if χ0 is a separating family for X and contains a
non-vanishing constant function, then U(χ0) = χ.

Corollary 2.9. If χ0 is a separating family, then so is χ. If χ is a separating family and
U(χ0) = χ, then χ0 is also a separating family.

Note that in general, the family χ of all continuous functions isn’t necessarily separating.
However, it is known that if X is a compact Hausdorff space then χ is a separating family.
Now that we know how the completion of a set of functions work, let’s manipulate the
functions themselves to prove some theorems.

Theorem 2.10. If ε is any positive number and α ≤ γ ≤ β any real interval, then there
exists a polynomial p(γ) in the real variable γ with p(0) = 0 such that ||γ| − p(γ)| < ε for
α ≤ ε ≤ β.

Theorem 2.11. The sequence ak is defined as a1 = 1
2
, ak = 1

2

∑m+n=k
m,n≥1 aman. Let σn =∑k=n

k=1 ak. Then σn < 1 for all n.

Theorem 2.12. Let σ(x) =
∑∞

k=1 akx
k. Then σ(x) = 1−

√
1− x when x < 1.

And lets put that all together.

Theorem 2.13. Let X be a compact space, χ the family of all continuous real functions
on X, χ0 an arbitrary subfamily of χ, and U(χ0) the family of all functions (necessarily
continuous) generated from χ0 by the linear ring operations and uniform passage to the
limit. Then a necessary and sufficient condition for a function f in χ to be in U(χ0) is
that f satisfy every linear relation of the form g(x) = 0 or g(x) = g(y) which is satisfied
by all function in χ0. If χ0 is a closed linear subring of χ - that is χ0 = U(χ0) - then χ0

is characterized by the system of all the linear relations of this kind which are satisfied by
every function belonging to it. In other words, χ0 is characterized by the partition of X into
mutually disjoint closed subsets on each of which every function in χ0 is constant and by the
specification of that one, if any, of these subsets on which every function in χ0 vanishes.

3. Proofs

Proof of Theorem 2.1. Necessity is trivial, as if it is in U(χ0) then setting fxy to f works.
Sufficiency is the hard part. Starting with fxy in U1(χ0) let’s make an approximation for f .
Let Gy : (z|f(z)−fxy(z) < ε) where x is fixed. By hypothesis x and y are in Gy, so the union
of all Gy is the entire space X. Due to the fact that X is compact, there are such points
y1, y2, · · · , yn such that Gy1 ∪ Gy2 ∪ · · · ∪ Gyn = X. Setting gx = max(fxy1 , fxy2 , · · · , fxyn),
we can see that for any z in X we have z ∈ Gyk for a suitable choice of k and hence
gx(z) ≥ fxyk(z) > f(z)− ε. On the other hand the fact that fxy(x) < f(x) + ε implies that
gx(x) < f(x)+ε. We now basically repeat for g. Hx = (z|gx(z) < f(z)+ε). Evidently x is in
Hx, and so the union of all Hx is X. Since X is compact, the union of Hx1 , · · · , Hxm is still
X. Set h = min(gx1 , · · · , gxm). We can see that any z ∈ X there exists k such that z ∈ Hxk .,
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and so h(z) ≤ gxk(z) < f(z) + ε. Since gx(z) > f(z) − ε that means that h(z) > f(z) − ε.
Combining the two gives us that |f(z)−h(z)| < ε. Since we only used the lattice operations,
we are good. �

Proof of Corollaries 2.2 and 2.3. We take χ0 to be the totality of functions occurring in the
sequence fn. Then U1(χ0) = χ0 since monotonicity implies that fm ∪ fn coincides with one
of the two functions fm and fn while fm ∩ fn coincides with the other. The assumption that
limn→∞ fn(x) = f(X) for every x now shows that the condition of 2.1 is satisfied. So, f is in
U(χ0); and f is therefore the uniform limit of functions occurring in χ0. Since |f(x)− fn(x)|
decreases as n increases and since |f(x)− fN(x)| < ε for all x and a suitable choice of N , we
can see that |f(x)− fn(x)| > ε for all n ≥ N , as was to be proved. �

Proof of Theorem 2.4. Our hypothesis that χ0 = U(χ0) shows that χ0(x, y) has χ0(x, y)∗ as
its closure, due to Theorem 2.1. Let us suppose that that there is some other G = U(G) ⊂ χ,
and that χ0(x, y)∗ = G(x, y)∗. Then the conditions for f in χ to belong to χ0 are identical
to those for it to belong to G. Hence χ0 and G are the same. �

Proof of Theorem 2.5. Since G0 = U(χ0) is closed under the lattice operations and uniform
passage to the limit, Theorem 2 can be applied to G0. However, the fact that G0 is also
closed under the linear operations can be used to produce effective simplifications. Due to
that, the set G0(x, y) where x and y are arbitrary points in X must be the entire plane, a
straight line passing through the origin, or the one point set consisting of the origin alone.
If G0(x, y) is the origin alone, then it falls under case (1). If G0 is a line through the origin,
then we have case (2) if it coincides with one of the coordinate axis, case (3) if it is at 45◦,
and case (4) otherwise. When G0 is the whole plane, on the other hand, there is no such
linear relation. We know that f in χ belongs to G0 if and only if (f(x), f(y)) ∈ G0(x, y).
Since χ0 ⊆ G0, the conditions imposed on G0 are also satisfied by the functions in χ0. This
also works in the other direction, as sums, multiplications by constants, absolute values,
and uniform limits keep it to be true. That means that we can just use the same α, β for
αg(x) = βg(y). �

Proof of Corollary 2.6. Let’s look at the four cases. g(x) = 0 and g(y) = 0 doesn’t work as
that is a vanishing function. g(x) = 0 and g(y) unrestricted doesn’t work because they must
be equal. g(x) = g(y) is true. And finally g(x) = λg(y) doesn’t work because λ must be
1. �

Proof of Corollary 2.7. If there are no linear relations, then according to Theorem 2.5 ev-
erything is in U(χ0). Henceforth U(χ0) = χ. �

Proof of Corollary 2.8. Since χ0 contains a non-vanishing constant, the only condition pos-
sible is that g(x) = g(y), due to Corollary 2.6. Since χ0 is a separating family, this can’t
happen. Henceforth due to Corollary 2.7 this is true. �

Proof of Corollary 2.9. The first statement is trivial: If there exists one in χ0, there exists
one in χ. Since χ0 is subject to no linear relations of the form g(x) = g(y) other than the
ones that are satisfied in U(χ0) = χ, the second part is also true. �

Proof of Theorem 2.10. Unless γ = 0 is inside the given interval (α, β), we can obviously
take p(γ) = ±γ(). Thus there is no loss of generality in confining our attention to intervals
of the form (−γ, γ). We can also just look at (−1, 1) as one can just scale it up. Just take

the partial sum for
√

1− (1− γ2), which by Theorem 2.12 is 1− σ(1− γ2). �
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Proof of Theorem 2.11. Let’s prove this by induction. σ1 = 1
2
. The inductive case is as

follows: σn+1 = a1 +
∑n+1

k=2 ak = 1
2

+ 1
2

∑n+1
k=2

∑i+j=k
i,j≥1 aiaj ≤ 1

2
+ 1

2

∑n
i,j=1 aiaj ≤

1
2
(1 + σ2

n).
Since σn < 1 by the inductive hypothosis, we get σn+1 < 1. �

Proof of Theorem 2.12. To prove this we show that σ(x)(2 − σ(x)) = x. This proves it as
(1 −

√
1− x)(2 − (1 −

√
1− x) = (1 −

√
1− x)(1 +

√
1− x) = 1 − (1 − x) = x.Write this

using partial sums of the power series and we get(
n∑
i=1

aix
i

)(
2−

n∑
j=1

ajx
j

)
= 2

n∑
k=1

akx
k −

n∑
i,j=1

aiajx
i+j

= 2
n∑
k=1

akx
k − 2

n∑
k=2

akx
k −

i+j≥n+1∑
1≤i,j≤n

aiajx
i+j = x−

i+j≥n+1∑
1≤i,j≤n

aiajx
i+j

We can estimate the final term as follows:
i+j≥n+1∑
1≤i,j≤n

aiajx
i+j ≤

i+j≥n+1∑
1≤i,j≤n

aiaj ≤
∞∑

k=n+1

i+j=k∑
i,j≥1

aiaj ≤ 2
∞∑

k=n+1

ak

This tends to zero, and so σ(x)(2− σ(x)) = x. That means that σ(x) = 1±
√

1− x. Since
σ(x) < 1, we know that σ(x) = 1−

√
1− x. �

Proof of Theorem 2.13. We know that if f is in U(χ0) then |f | is also in U(χ0) due to
Theorem 2.12. Since X is compact, we know that f is bounded, and so α ≤ f(x) ≤ β
for all x, we can find a polynomial pε(x) such that ||x| − pε(x)| < ε for α ≤ x ≤ β while
pε(0) = 0. It is clear than pε(f) is in U(χ0) and that ||f(x) − pε(f(x))| > ε for all x in X.
So, |f | is the uniform limit of functions in U(χ0), and so |f | is in U(χ0). We know that the
characterization given in Theorem 2.5 applies to U(χ0). If every function in U(χ0) were to
satisfy a linear relation of the form g(x) = λg(y), we would find for everyf in U(χ0) that,
f 2 being also in U(χ0), the relations f(x) = λf(y), f 2(x) = λf 2(y), λ2f 2(y) = λf 2(y) would
hold; and we can conclude that f(y) = 0 for every f in U(χ0) or that λ = 0, 1. So we know
that f is in U(χ0) if and only if it satisfies all the linear relations g(x) = 0 or g(x) = g(y)
satisfied by every function in χ0. The first characterization of the closed linear subrings of
χ given in the statement of the theorem follows. Now, for the second characterization, let’s
define a stronger equality. x ≡ y only if f(x) = f(y) for all f ∈ χ0. We can partition the
space into mutually disjoint subsets, each being the maximal set of mutually equal elements.
We know that the partition space containing a x is closed. If x isn’t in the same space as y,
that means there is some f such that f(x) 6= f(y). At most one partition space can contain
a point where for all f then f(z) = 0, since any other space would be equivalent. And all
elements in that space share that property. That means that we can distinctly partition
them. Q.E.D. �
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