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Abstract. In this paper, I will introduce basic definitions of entropy and talk about the
main theorems related to entropy. The main theorems covered in this paper are entropy of
the identity transformation, all periodic transformations, and applications of Kolomogrov-
Sinai theorem. Basic knowledge in measure theory is assumed.

1. Introduction

Entropy is an important measurement in the field of information theory. Entropy was first
developed by Shannon is 1948 from the motivation of limits on compressibility data. Entropy
has ties with coding theories, LP hierarchies, and quantum computation. Intuitively, entropy
of a random variable X or a set of random variables can be thought of as one of the following:

• The amount of randomness in X
• Minimum number of bits needed to generate a draw from X
• Average number of bits needed to store a draw from X
• Minimum number of bits needed for one to communicate one draw from X with
another

For a random variable X, the entropy H(X) is defined as below:

Definition 1.1. H(X) =
∑

X∈range(X) pX(x) log2(1/pX(x)).

As an example, if we have four balls in a hat that we can draw with

X =


Red 1/2
Green 1/4
Blue 1/8
Orange 1/8

H(X) = 1/2∗1+1/4∗ (2)+1/8∗3+1/8∗3 = 1.75. We can choose to interpret this entropy
value in different ways that are listed in the beginning of this section.

2. Preliminaries

In this section, I will introduce the basic definitions of partition and entropy.

Definition 2.1. A partition of a measure space (X,D, µ) is a pairwise disjoint collection of
sets {A1, A2, . . .} such that

⋃
k Ak = X.

Definition 2.2. The join of the partitions A = {A1, A2, . . .} and B = {B1, B2, . . .} is
A ∨ B = {Ai ∩Bj}.

Proposition 2.3. The join of two partitions is another partition.
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Proof. Let C = {(Ai∩Bj)∩(Ak∩Bl)} where either i ̸= k or j ̸= l holds, but not both. A and
B are partitions of sets X and Y, respectively. (Ai∩Bj)∩ (Ak∩Bl) = (Ai∩Ak)∩ (Bj ∩Bl) =
∅ ∩ ∅ = ∅. Thus, the elements of the join of two partitions is also pairwise disjoint. ■

The join notation can be extended to multiple sets
∨n

i=1 Ai = {Ai1 ∩ · · · ∩ Ain}. It’s also
clear that the elements in this join is pairwise disjoint by the same logic as shown in the
proof of proposition 1.3. In this paper, the joined partitions will be a set of iterations of T.

Definition 2.4. The entropy of a partition A = {A1, A2, . . . , Ak} is

H(A) = −
k∑

i=1

µ(Ai) log(µ(Ai))

.

Example. Let (X,D, µ) be a probability space. Let X be the interval (0, 1). Let partition
A = {(0, 1/4), 1/4, (1/4, 1)}. H(A) = −1/4 log(1/4)− 0 log(0)− 3/4 log(3/4) = 1/4 log(4) +
3/4 log(4/3).

We can assume that 0 log(0) = 0 in the example above because limx→0 x log(x) = 0. In a
probability space, entropy is always nonnegative because log(µ(Ai)) ≤ 0 as 0 ≤ µ(Ai) ≤ 1.
Notice that if Ai is the full set or null set, then there is no change in entropy, meaning that
the term µ(Ai) log µ(Ai) is zero. Also, if Ai = X, the all other sets must be empty sets as
a partition is a set of pairwise disjoint elements. Alternatively, entropy can be defined for a
partition and transformation.

Definition 2.5. The entropy of a finite partition A and transformation T is

H(A, T ) = lim
n→∞

1

n
H

(
n−1∨
i=0

T−i(A)

)
We will not observe the proof of why this limit exists, but the main idea of the proof is

that the function −x log x is bounded by the maximum value of -0.16 approximately. Then,
we use that to show that the limit above should exist. Notice that this definition of entropy
of a partition uses the previous definition of entropy of a partition on the partition formed
by repeatedly applying T . H(

∨n−1
i=0 T−i(A)) represents the amount of information after n

applications of T on the partition A. 1/n in front of H causes the definition of H(A, T )
to be the average amount of information added per application of T on A. To remove the
dependency on partition, we can define entropy on T as shown below.

Definition 2.6. The entropy of a transformation T is H(T ) = sup(H(A, T )), over all finite
partitions A.

For a simple application of this definition, we will look into the proof regarding the entropy
of the identity transformation and the periodic transformation in the next section.

3. The Identity Transformation and The Periodic Transformation

Proposition 3.1. Entropy of the identity transformation T is zero.

Proof. For a finite partition A,
∨∞

i=1 A = A. Because entropy of a set of full measure is

zero, entropy of an identity transformation T is limn→∞
H(A)
n

= 0 for any partition A, and
sup(H(A, T )) = 0. So, we can conclude that the entropy of the identity transformation is
0. ■
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For further application of the definition of entropy of a transformation, we will look into
periodic functions.

Definition 3.2. A transformation T is periodic if T (x) = Tm(x).

Theorem 3.3. The Entropy of a periodic transformation is 0.

Proof. Because T is periodic, T (x) = Tm(x). Then, for a partition A,

H

(
m∨
i=0

T−i(A)

)
=

(
n∨

i=0

T−i(A)

)
for all n > m. This is because for all i = k with the condition that k > m, T−k = T−k+m.
Because T−i repeats the sets that already exist in the join of the partitions, the entropy does
not increase further when i > m. For any partition Ai,limn→∞

1
n
H (
∨m

i=0 T
−i(A)) = 0, and

the same limit holds true for the supremum of all finite partitions. Hence, we can conclude
that the entropy of all periodic transformations is zero. ■

4. Applications of Kolmogorov-Sinai Theorem

Definition 4.1. Given a transformation T and a partition A = {An}∞n=1, T (A) is equivalent
to {T (An)}∞n=1.

Proposition 4.2. If T is invertible,then T (A) is also a partition

Proof. T is invertible, so T is bijective. As T is bijective, T (Ai)∩T (Aj) = ∅ for i ̸= j because
Ai∩Aj = ∅, and the transformation applied to each of set also doesn’t have any intersection
by the definition of a bijective function. ■

Definition 4.3. A T -generator for some invertible T and a measure space (X,D, µ) is a
partition A such that D is generated by

∨∞
i=−∞ T i(A).

Theorem 4.4. (Kolmogorov-Sinai)If a partition A is a T-generator, then H(A, T ) = H(T ).

In this paper, we will look at the applications of Kolmogorov-Sinai theorem. The proof
can be found in one of the references.

Example. Rotations of the circle have the entropy of zero.

A rational rotation, is a periodic transformation as for any rational number p/q with
(p, q) = 1, T q(x) = T (x). Thus, a rational rotation has the entropy of zero. For an irrational
rotation, let A = {(0, π], [π, 2π)}be the partition of a circle into two arcs. Because each
arc has two endpoints, only two new arcs can be formed after an application of T . From
reference [1], the maximal entropy of n set partition is log(n), so H(T ) = H(A, T ) ≤
limn→∞ log(2n+ 2)/n = 0, so the entropy of a rotation of the circle is zero.
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