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Abstract. Entropy is a fundamental concept in information theory and ergodic
theory, characterizing the unpredictability or complexity of a system. The semi-
nal work by Claude Shannon established the quantitative measure of information
known as Shannon entropy; this paper extends the notion of entropy beyond dis-
crete probabilistic frameworks to the measure-theoretic context. The paper high-
lights the Shannon-McMillan-Breiman theorem, which asserts the convergence of
entropy in stationary ergodic processes. Finally, we examine the practical role of
entropy in developing loss functions for model optimization in machine learning.

1. Introduction to Entropy

The concept of information entropy was introduced by Claude Shannon in his 1948
paper “A Mathematical Theory of Communication” [Sha48] and is also referred to
as Shannon entropy. The core idea of information theory is that the “informational
value” of a message depends on the degree to which the content of the message is
surprising. If a highly likely event occurs, the message carries very little information.
On the other hand, if a highly unlikely event occurs, the message is much more
informative.

Entropy is a way to quantify the measure of information, measuring the expected
or average amount of information conveyed by identifying the outcome of a random
trial. The information content, also called the surprisal or self-information, of an
event E is a function which increases as the probability p(E) of an event decreases.
This relationship can be described by the function

− log

(
1

p(E)

)
.

In N (independent) events, where the ith event has probability pi, we will get total
information I of

I = −
n∑

i=1

(N · pi) · log(1/pi).

But then, the average information we get per symbol observed will be

I

N
=

(
1

N

) n∑
i=1

(N · pi) · log(1/pi) =
n∑

i=1

pi · log(1/pi).

This brings us to a fundamental definition of entropy [Car14].

Definition 1. Let the probability distribution P = {p1, p2, . . . , pn}. We define the
entropy of the distribution P by:

H(P ) = −
n∑

i=1

pi · log(1/pi).
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If we have a continuous rather than discrete probability distribution P (x):

H(P ) = −
∫

P (x) · log(1/P (x)) dx.

Example. Consider tossing a coin with probabilities p and q for heads and tails,
respectively. The entropy of the unknown result of the next toss of the coin is
maximized if the coin is fair (p = q = 1/2) because there is maximum uncertainty:
it is most difficult to predict the outcome of the next toss.

H(X) = −
n∑

i=1

p(xi) log2 p(xi) = −
2∑

i=1

1

2
log2

1

2
= −2 · 1

2
· (−1) = 1

For an unfair coin, entropy decreases since one outcome is more probable; for exam-
ple, if p = 0.7 :

H(X) = −0.7 log2(0.7)− 0.3 log2(0.3) = 0.8816 < 1.

2. Measure-Theoretic Entropy

Entropy can be formally defined in the language of measure theory [Fie19].

Definition 2. A partition of a measure space (X,B,m) is a pairwise disjoint
countable collection of sets {P1, P2, . . .} such that

⋃
k Pk = X.

Definition 3. The join of the partitions P = {P1, P2, . . .} and Q = {Q1, Q2, . . .},
is P ∨Q = {Pi ∩Qj}. It can be extended to more than two partitions as follows:

P1 ∨ . . . ∨ Pn =
n∨

i=1

Pi = {Pr1 ∩ Pr2 ∩ . . . ∩ Prn}

where Prj ∈ Pi, rj ≥ 1.

The result of the join is another partition. We will mostly concern ourselves with
finite partitions, each of which generates a finite σ-algebra. If after a certain n, the
partition stops becoming more refined, then we can say that the transformation is
no longer adding “information” to the system.

Definition 4. Define the information function for measure µ and partition P

IP (x) = − log µ(P (x)) = −
∑
Pi∈P

1Pi
(x) log µ(Pi).

This brings us to the fundamental definition of entropy in measure theory.
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Definition 5. The entropy of a finite partition P = {P1, P2, . . . , Pk} is

H(P ) = E(IP ) = −
k∑

i=1

µ(Pi) log(µ(Pi)).

Since limx→0 x log(x) = 0, we let 0 log(0) = 0.

Definition 6. The entropy of a finite partition P and transformation T , is

H(P, T ) = lim
n→∞

1

n
H

(
n−1∨
i=0

T−i(P )

)
.

The entropy H(P, T ) quantifies the new information obtained per application of
a transformation T to a partition P , averaged over n applications. To isolate T ’s
intrinsic effect, we define T ’s entropy as the supremum of H(P, T ) over all finite
partitions, thereby removing dependence on any particular partition.

Definition 7. The entropy of a transformation T is H(T ) = sup(H(P, T )) over all
finite partitions P .

Just from this definition, we draw a few conclusions about the entropy of certain
transformations. First, the entropy of the identity transformation is 0. Given that
the identity does not change the original partition at all, we have limn→∞

1
n
H(P, Idn) =

0, which is 0 for any partition, so the supremum is 0. Indeed, the same holds for
any periodic (T = T k for some k) transformation.

3. Shannon-McMillan-Breiman Theorem

The Shannon-McMillan-Breiman theorem is a fundamental result that extends
Claude Shannon’s concept of entropy to the realm of random processes. Essentially,
the theorem states that for a stationary ergodic process, the average unpredictability
of a single symbol converges almost surely to a constant value as the length of the
sequence of symbols goes to infinity. This constant value is equal to the entropy
rate of the process, which is the average entropy per symbol of the process [UWs].

Theorem 1 (Shannon-McMillan-Breiman Theorem). Let (X,B, µ, T ) be a measure-
preserving transformation and P a finite partition with H(P ) < ∞. Let Pn =∨n−1

k=0 T
−k(P ) and Pn(x) the element of Pn containing x. Then

h(P, T ) = lim
n→∞

− 1

n
log(µ(Pn(x)))

Before we begin the proof of this theorem, we must first define some terms.

Definition 8. For a measure preserving system (X,B, µ, T ), some measurable func-
tion f : X → R and σ-algebra C, we define the conditional expectation Eµ(f |C)
as the unique C-measurable function f̃ such that∫

C

f̃dµ =

∫
C

fdµ for all C ∈ C.

C-measurable means that f̃−1((t,∞)) ∈ C for all t ∈ R, and therefore f̃ must be

constant on all atoms of C. It is the function f̃ such that for each atom C,

f̃(x) =
1

µ(C)

∫
C

fdµ for µ-a.e. x ∈ C.
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The finer the σ-algebra C, the more f̃ looks like f . This is expressed in the
following theorem.

Theorem 2 (Martingale Convergence Theorem). If (Cn)n is a sequence of σ-algebras
such that Cn+1 refines Cn and C = limn→∞ Cn :=

∨∞
n=1 Cn, then for every f ∈ L1(µ)

Eµ(f |Cn) → Eµ(f |C) as n → ∞.

An elegant and short proof can be found here [Isa].

Definition 9. We define conditional entropy of a measure µ and partitions P
and Q as

Hµ(P |Q) = −
∑
Qj∈Q

µ(Qj)
∑
Pi∈P

µ(Pi ∩Qj)

µ(Qj)
log

µ(Pi ∩Qj)

µ(Qj)
.

Theorem 3. Given measures µ, µi and two partitions P and Q, these properties
follow:

(1) Hµ(P ∨Q) ≤ Hµ(P ) +Hµ(Q);
(2) Hµ(Q) = Hµ(P ) +Hµ(Q|P ), and hence hµ(T,Q) = hµ(T, P ) +Hµ(Q|P ).
(3)

∑n
i=1 piHµi

(P ) ≤ H∑n
i=1 piµi

(P ) for each probability vector (p1, . . . , pn).

Definition 10. Similarly to conditional entropy, we define the conditional infor-
mation function

IP |Q(x) := −
∑
Pi∈P

∑
Qj∈Q

(1)Pi∩Qj
(x) log

µ(Pi ∩Qj)

µ(Qj)
.

Comparing this to conditional entropy, we get∫
X

IP |Qdµ = −
∑
Pi∈P

∑
Qj∈Q

µ(Pi ∩Qj) log
µ(Pi ∩Qj)

µ(Qj)
= Hµ(Pi|Qj).

By the previous definition and Theorem 3, we can show that

(1) IP∨Q = IP + IQ|P .

By the definition of conditional expectation and because 1P∩Q = 1P1Q we have

− logEµ(1P (x)|Q) = − logEµ

(∑
P∈P

1P |Q

)

= − log
∑
Q∈Q

1

µ(Q)

∫
Q

∑
P∈P

1Pdµ

= − log
∑
P∈P

∑
Q∈Q

1P∩Q
µ(P ∩Q)

µ(Q)

= lP |Q(x).

We are now ready to prove the Shannon-Breiman-McMillan Theorem.
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Proof. Let gk(x) = IP |V k−1
j=1 T−jP (x) for k ≥ 2 and g1(x) = IP . Then by (1),

IV n−1
j=0 T−jP (x) = IV n−1

j=1 T−jP (x) + IP |V n−1
j=1 T−jP (x)

= IV n−2
j=0 T−jP (Tx) + gn(x)

= IV n−2
j=0 T−jP (Tx) + IP |V n−2

j=1 T−jP (Tx) + gn(x)

= IV n−3
j=0 T−jP (T

2x) + gn−1(Tx) + gn(x)

...

= g1(T
n−1(x)) + · · ·+ gn−1(T (x)) + gn(x)

=
n−1∑
j=0

gn−j(T
jx).

Let g = limn→∞ gn, which belongs to L1(µ) because of the Martingale convergence
theorem. We write the previous equaIity as

1

n
IV n−1

j=0 T−jP (x) =
1

n

n−1∑
j=0

g(T jx) +
1

n

n−1∑
j=0

(gn−j − g)(T jx).

Since µ is ergodic, the first sum converges almost everywhere with respect to the
measure µ to

∫
X
gdµ, which is equal to Hµ(P |V ∞

j=1T
−jP ) by (1), which in turn is

equal to h(P, T ).
For the second sum, we define

GN = sup
k≥N

|gk − g| and g∗ = sup
n≥1

gn.

Then 0 ≤ GN ≤ g + g∗ and g + g∗ ∈ L1(µ) because
∫
X
gndµ = Hµ(P |V n−1

j=1 T−jP )
is decreasing in n. Moreover, GN → 0 µ-a.e., so by the dominated convergence
theorem,

lim
N→∞

∫
X

GNdµ =

∫
X

lim
N→∞

GNdµ = 0

Now for any N ≥ 1 and n ≥ N we split the second sum:

1

n

n−1∑
j=0

(gn−j − g)(T jx) =
1

n

n−N−1∑
j=0

(gn−j − g)(T jx) +
1

n

n−1∑
j=n−N

(gn−j − g)(T jx)

≤ 1

n

n−N−1∑
j=0

GN(T
jx) +

1

n

n−1∑
j=n−N

(gn−j − g)(T jx).

First take the limit n → ∞. The second sum tends to zero, and by the ergodic
theorem, the first sum tends to

∫
X
GNdµ. Finally, taking N → ∞, also

∫
X
GNdµ →

0. Hence
1

n

n−1∑
j=0

IV n−1
j=0 T−jP (x) → h(P, T ) µ-a.e.,

as required. This finishes the proof. □
This theorem is powerful because it connects the concept of entropy, a theoretical

measure of information content, with the practical occurrence of sequences in a
random process, showing that there is a predictable pattern in how information is
distributed across different sequences in the long run.
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4. Application of Shannon entropy in Machine Learning

Cross entropy is a key component in creating loss functions that measure the
accuracy of predictions made by logistic regression models and neural networks,
types of predictive models used in machine learning. It is used in both binomial and
multinomial classification scenarios [MMZ23].

Definition 11. The cross entropy compares two probability distributions p and q

H(p, q) = Ep[− log(q)] = −
∫

p(x) · log(q(x))dx.

H(p, q) gives us the average number of bits required to code an event from q if we
use the “wrong” coding scheme q instead of p. In machine learning, it is a very useful
measure for the similarity of probability distributions and serves as a loss function,
an equation that calculates how far the prediction deviates from the actual values.
Usually, p is used for the true (or empirical) distribution (i.e., the distribution of
the training set), and q is the distribution described by a model.
Let’s take the binary logistic regression as an example. The two classes are labeled

0 and 1, and the logistic model assigns the probabilities qy=1 = ŷ and qy=0 = 1− ŷ to
each input x. This can be concisely written as q ∈ {ŷ, 1− ŷ}. Using this notation,
the cross entropy between empirical and estimated distribution for a single sample
is

H(p, q) = −
∑
i

pi log(qi) = −y log(ŷ)− (1− y) log(1− ŷ).

When used as a loss function, the average of all cross entropies from all N samples
is used,

L = − 1

N

N∑
j=1

∑
i

pij log(qij) = − 1

N

N∑
j=1

yj log(ŷj)− (1− yj) log(1− ŷj).

In essence, the cross-entropy framework underpins a critical loss function in ma-
chine learning algorithms, an exciting connection between entropy and the practical
endeavors of predictive modeling.
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