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1 Introduction

When there are only finitely many events, probability is pretty simple: If you can
find the probability of any single event occurring, then the probability of a set
of events occurring is just the sum of the events in the set. However, this breaks
down when there are an infinite number of events. For example, it is intuitively
possible to choose an element of [0, 1] with equal probability. However, the
probability any specific number is chosen is 0. So how can you choose any
element at all? Also, even though [0, 1] is uncountable and the integers N are
countable, it seems impossible to choose an element of N at random. It turn out
that measure theory is just the right tool we need to resolve these paradoxes.

2 Basic Definitions and Theorems

We first need to rigorously define probability.

Definition. A probability space is a measure space (Ω,F , P ) where P (Ω) = 1.
We call P a probability measure and the elements of F events. Ω is called a
sample space.

This definition alone allows us to explain both the paradoxes in the previous
section. Measure spaces only have countable additivity, so it is possible that
P ([0, 1]) = 1 even though P (x) = 0 for any x ∈ [0, 1]. For example, consider
the Lebesgue measure λ. This is actually the measure that lets us choose any
element with equal probability. (i.e. is translation invariant) If there existed a
probability measure on N, where P (x) = ε > 0 for any x ∈ N, then P (Z) =∑∞

i=0 P (i) =
∑∞

i=0 ε = ∞, so there exist no way to randomly choose an element
from N, or any countable set, with equal probability.

We will now prove a basic theorem about integration:

Theorem 2.1 (Chebyshev’s Inequality). Let (Ω,F , P ) be a probability space
and f > 0 almost everywhere. Then

P (x ∈ X : f(x) ≥ ε) ≤ 1

ε

∫
Ω

f dP. (1)
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Proof. Let g(x) = 0 when f(x) < ε and g(x) = ε when f(x) ≥ ε. Since
g(x) ≤ f(x), ∫

Ω

f dP ≥
∫
Ω

g dP = εP (x ∈ X : f(x) ≥ ε). (2)

This is often used in the form

P (x ∈ X : |f(x)| ≥ ε) ≤ 1

ε2

∫
Ω

f dP. (3)

To see this, apply Chebyshev on f(x)2 and ε2. A similar theorem holds for
higher powers. We will now prove our first serious theorem in measure theory:

Theorem 2.2 (First Borel-Cantelli Lemma). Let X1, X2, . . . be a series of
events in a probability space (Ω,F , P ) with

n∑
i=0

P (Xi) < ∞. (4)

Then the probability that infinitely many of the Xi occur is 0.

Proof. The set of all x ∈ Ω such x ∈ Xi for infinitely many i is

X =

∞⋂
j=1

∞⋃
i=j

Xi. (5)

We get that

µ(X) ≤ µ(

∞⋃
i=j

Xi) ≤
∞∑
i=j

µ(Xi) → 0 (6)

as j → ∞.

This has a converse if we assume that the Xi are independent.

Definition. A set of events S is said to be independent if for any E1, E2 ∈ S,
P (E1 ∩ E2) = P (E1)P (E2).

Theorem 2.3 (Second Borel-Cantelli Lemma). Let Xi be independent events
such that

∞∑
i=1

P (Xi) = ∞. (7)

Then it is almost certain that infinitely many of the Xi will occur.

Proof. It suffices to prove that

P

 ∞⋂
j=1

∞⋃
i=j

Xi

C

= 0 (8)
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This is equivalent to

P

 ∞⋃
j=1

∞⋂
i=j

XC
i

 ≤
∞∑
j=1

∞∏
i=j

1− P (Xi) =

∞∑
j=1

0 = 0. (9)

3 Random Walks On Lattices

Here is an interesting application of these lemmas:

Theorem 3.1. A random walk along a d dimensional lattice starting at the
origin that moves to adjacent lattice points with equal probability almost surely
returns infinitely many times if d ≤ 2, and almost never if d > 2.

Proof. Let Ed,2n be the probability that a random walk in d dimensions returns

to 0 after 2n moves. Then P (Ed,2n) =
(

1
2n

(
2n
n

))d
. We need to find when

n∑
i=1

(
1

4i

(
2i

i

))d

(10)

diverges. We will need to take Stirling’s approximation

n! ∼
√
2πn

(n
e

)n
(11)

for granted. (A proof can be found here [1]) This gives that

1

4i

(
2i

i

)
∼
(

1√
πi

)d

. (12)

Since
n∑

i=1

1
√
πi

d
(13)

diverges for d ≤ 2,
n∑

i=1

1

4i

(
2i

i

)
= ∞, (14)

and the second Borel-Cantelli lemma proves that the origin is almost certainly
returned to infinitely many times.

If d > 2, then
n∑

i=1

1

4i

(
2i

i

)
< ∞, (15)

so the first Borel-Cantelli lemma proves that the origin is almost certainly not
returned to infinitely many times.
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4 The Product Measure and Fubini’s Theorem

Everything we do in this section and the next also applies to general measure
spaces. Imagine performing two experiments, where you want the result A from
the first experiment and B from the second. What is the probability you get
the desired result from both experiments? Intuitively, the answer is P (A)P (B).
So it makes sense to say that P (A×B) = P (A)P (B). Does this give us a way
to define a σ-algebra on the product of two sample spaces? It turns out that it
does, and that this measure is unique.

Let (Ω1,F1, P1) and (Ω2,F2, P2) be probability spaces. Obviously, the sam-
ple space should be Ω1 × Ω2. It’s tempting to let the collection of measurable
sets be F1 × F2, the set of all measurable rectangles, but this is not necessar-
ily a σ-algebra. So we’ll do the next best thing and let the measurable sets
be those in F1

⊗
F2, the smallest σ-algebra containing F1 × F2. We want

(P1

⊗
P2)(A × B) = P3(A × B) = P1(A)P2(B) for A ∈ F1, B ∈ F2. The

measure P3 is called a product measure.

Example 4.1. The Lebesgue measure on R2 is the product measure λ× λ.

Recall that the Lebesgue measure is determined uniquely by its values on
the intervals [a, b]. Is (P1 × P2) always uniquely determined by its values on
measurable rectangles? This turns out to be true, at least for finite measure
spaces.

Theorem 4.1. With notation as before, the measure P3 exists and is unique.

This theorem is a special case of Caratheodory’s extension theorem, which
generalizes the construction of the Lebesgue measure from its value on intervals.
We won’t prove this here, since that would take us too far off track, but the
proof is basically the same as the construction of the Lebesgue measure.

Recall Fubini’s theorem on R2, which allows us to write a double integral as
a iterated integral. Is the same thing true for any product measure?

Theorem 4.2 (Fubini’s Theorem). With notation as before,∫
A×B

f(x, y) dP3 =

∫
A

∫
B

f(x, y) dP2 dP1 (16)

if ∫
A×B

|f(x, y)| dP3 < ∞. (17)

Proof. Notice that the theorem obviously holds when f = ⊮S for a measurable
rectangle S. Take it for granted that this holds for all P3 measurable sets S,
not just rectangles. (This is actually one way to define the product measure).

Thus this holds for simple f . If we assume f is positive, we can find a
sequence of simple functions 0 ≤ f1 ≤ f2 ≤ . . . such that limn→∞ fn = f . Since
the fi are simple,
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limn→∞
∫
A×B

fn(x, y) dP3 = limn→∞
∫
A

∫
B
fn(x, y) dP2 dP1.(18) By Mono-

tone convergence,∫
A×B

lim
n→∞

fn(x, y) dP3 =

∫
A

∫
B

lim
n→∞

fn(x, y) dP2 dP1. (19)

limn→∞ fn = f , so we are done.
For general f , we write f = f+ − f−, where f+, f− are the positive and

negative parts of f respectively and get the theorem as long as neither
∫
A×B

f+
or
∫
A×B

f− is ∞, that is,
∫
A×B

|f | < ∞.

This also proves Tonelli’s Theorem:

Theorem 4.3. ∫
A×B

f(x, y) dP3 =

∫
A

∫
B

f(x, y) dP2 dP1 (20)

if f is positive.

5 Random Variables

We also would like to define a random real variable, that is, a variable that
takes on real values according to some distribution. It makes more sense to
define these as a function X : Ω → R than actual variables, since there is no
randomness in variables. Given a Lebesgue measurable set A ∈ 2R, we would
like it if the probability X is in A is defined, or equivalently that f−1(A) ∈ F
for all measurable sets A. This motivates the following definition:

Definition. A random variable is a measurable function X : Ω → R.

This actually defines a probability measure on R:

Definition. A image (or pushforward) measure on R is a measure obtained
from a measure space (Ω,F , P ) and a random variable X defined as PX(A) =
P (X−1(A)).

It is easy to check that this is a probability measure from the properties
of preimages. The image measure can be thought of as the probability that
f(x) ∈ B.

Recall that the intervals [−∞, b] generate the Lebesgue σ-algebra. Thus the
values of PX([−∞, b]) determine the image measure PX entirely.

Definition. Let (Ω,F , P ) be a probability space. The distribution function (or
CDF) of a random variable X : Ω → R is defined as F (x) = PX([−∞, b]).

If two random variables have the same distribution, they are basically the
same, since we don’t care about what the events themselves are, only their
probabilities.
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The next thing we would like to do is define the expected value E[X] of
a random variable X on a probability space (Ω,F , P ). An obvious definition
would be

E[X] =

∫
Ω

X dP (21)

(Remember that X is a measurable function Ω → R). Another sensible defini-
tion is

E[X] =

∫
R
xf(x) dx, (22)

where f = F ′.
These two turn out to be equivalent because of a general theorem.

Theorem 5.1 (Change of Variables). If either side is defined,∫
R
f dPX =

∫
Ω

f ◦X dP (23)

Proof. For indicator functions, this is just the definition of PX . Thus this holds
for all simple functions. There exists a sequence of simple functions {fi} such
that fn → f as n → ∞ and fi ≤ f for all i. Then

lim
n→∞

∫
R
fn dPX = lim

n→∞

∫
Ω

fn ◦X dP (24)

Dominated convergence tells us that we can swap the limit and integral, giving
us the formula.

By Theorem 4.1,∫
Ω

X dP =

∫
Ω

I ◦X dP =

∫
R
x dPX =

∫
R
xf(x) dx, (25)

the definitions of E(X) are equivalent.
Given the mean E(X) of a variable, we define it’s variance as

σ2 =

∫
Ω

(X − E(X))2 dP =

∫
R

(x− E(X))2 dPX . (26)

The standard deviation σ is the square root of the variance.
We can now rewrite Chebyshev’s inequality

P (x ∈ X : |f(x)| ≥ ε) ≤ 1

ε2

∫
X

f(x)2dP (27)

as

P (|X − µ| ≥ ε) ≤ σ2

ε2
. (28)
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6 The Laws of Large Numbers

We first need define the sum of random variables.

Definition. The sum of 2 random variables X1 and X2 on probability spaces
(Ω1,F1, P1) and (Ω2,F2, P2) is the random variable X+Y over (Ω1×Ω2,F1

⊗
F2, P1×

P2).

It should be obvious that means are additive.

Theorem 6.1. Let X and Y be random variables as before. Then

E(X + Y ) = E(X) + E(Y ) (29)

Proof.∫
Ω1×Ω2

X+Y dP1×P2 =

∫
Ω1

∫
Ω2

X+Y dP2 dP1 =

∫
Ω1

E(X)+X dP1 = E(X)+E(Y ).

(30)

It turns out that variances are additive too:

Theorem 6.2. Let X and Y be random variables. Then

σ2(X + Y ) = σ2(X) + σ2(Y ) (31)

Proof. We can assume that E(X) = E(Y ) = 0 by considering X − E(X), Y −
E(Y ) instead.

σ2(X+Y ) =

∫
Ω1×Ω2

(X+Y )2 dP1×P2 =

∫
Ω1×Ω2

X2+2XY +Y 2 dP1×P2 (32)

or

σ2(X)+σ2(Y )+2

∫
Ω1×Ω2

XY = σ2(X)+σ2(Y )+2E(X)E(Y ) = σ2(X)+σ2(Y )

(33)

If we repeat an experiment many times, we should expect the mean of the
results to converge (in some way) to the expected value. The laws of large
numbers formalize this notion.

Recall the main types of convergence:

Definition. A sequence {Xn} of variables in a probability space (Ω,F , P ) is
said to converge in probability to X if, for all ε > 0,

lim
n→∞

P (ω : |Xn −X| > ε) = 0. (34)

(This is called convergence in measure in analysis.)
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Definition. A sequence {Xn} of variables in a probability space (Ω,F , P ) is
said to converge almost certainly to X if

lim
n→∞

P (Xn ̸= X) = 0 (35)

(This is called convergence almost everywhere in analysis.)

Convergence almost certainly is stronger than convergence in probability, so
the strong and weak laws give conditions for each type, respectively. There are
several different hypotheses for both laws, but we will only prove one form of
each.

Theorem 6.3 (Weak Law of large numbers). Let {Xi} are independent random
variables in L2 with mean 0 and variance σ2 satisfying

lim
n→∞

1

n2

n∑
i=1

σ2(Xi) = 0. (36)

then
1

n

n∑
i=1

Xn → 0 (37)

as n → ∞ in probability.

Proof. i) By Chebyshev’s inequality,

P

(
| 1
n

n∑
i=1

Xi| > ε

)
≤ 1

n2ε2

n∑
i=1

σ2(i) (38)

for all ε > 0. As n → ∞ the right side approaches 0 by the condition.

Note that the condition holds when the {Xi} are independent identically
distributed variables (or i.i.d).

Theorem 6.4 (Strong law of large numbers). Let {Xn} be i.i.d random vari-
ables with mean µ < ∞. Then

1

n

n∑
i=1

Xn → 0 (39)

as n → ∞ almost surely.

The proof given in class is probably the cleanest one that works without
extra conditions, so we will give another proof that assumes E[X4] is finite.

Assuming E[X4 isfinite.]Wecanassumethatµ = 0. Then

E

( 1

n

n∑
i=1

Xi

)4
 =

1

n4

n∑
a=1

n∑
b=1

n∑
c=1

n∑
d=1

E[XaXbXcXd]. (40)
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Any of the terms E[XaXbXcXd] evaluates to 0 if one of {a, b, c, d} is different
from the others, since each Xi is in a different variable from all the other Xj .
Thus we are looking for

nE[X4] + 3n(n− 1)E(X2
1X

2
2 )

n4
(41)

since the terms are i.i.d.
Since x2 − 2xy + y2 = (x− y)2 > 0, xy < x2+y2

2 . Thus

E[X2
1X

2
2 ] < E[X4

1 ] (42)

and
nE[X4] + 3n(n− 1)E(X2

1X
2
2 )

n4
<

(3n(n− 1) + n)E[X4
1 ]

n4
(43)

and
(3n(n− 1) + n)E[X4

1 ]

n4
<

3E[X4
1 ]

n2
. (44)

n∑
i=1

3E[X4
1 ]

n2
(45)

is convergent, so its terms must converge to 0. Thus

E

( 1

n

n∑
i=1

Xi

)4
 (46)

almost surely converges to 0, and taking fourth roots gives us the theorem.
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