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Abstract

In this expository paper, we investigate the topic of dynamical billiards. The field of

dynamical billiards analyzes the dynamics of the motion of a ball bouncing in a billiard

table, which is bounded by a smooth closed curve. The movement of the ball satisfies

the properties that it always moves in a straight line, and the angle of incidence with

the boundary equals the angle of reflection. This second property is an empirical fact in

physics. In this paper, we look at the dynamics of some billiard boards in R2, and we use

Euclidean geometrical methods to understand and classify the ergodicity of these billiards.

In particular, we classify the ergodicity of billiards in circles and circular rings. Then, we

state some results about elliptic billiards. Then, we give some examples of chaotic billiards,

where a billiard is chaotic if after many bounces, the starting point has no relation to the

current point; in other words, a slight deviation in the starting point can create absolutely

divergent trajectories. We conclude with a physical application of billiards.

1 Introduction

Dynamical billiards study the dynamics of an idealized billiard ball in a billiard table. The
billiard table is a smooth closed curve, and the path of the ball is the union of straight
line segments, which satisfy the following property: the angle of incidence equals the angle
of reflection. In particular, dynamical billiards looks at the ergodicity and other properties
of different billiards. In this paper, we present some results for specific billiard tables, and
prove them using techniques from Euclidean geometry.

The main object of study in ergodic theory is that of a measure-preserving transformation.

Definition 1. Let pX,A, µq be a measure space. A function T : X Ñ X is said to be a
measure-preserving transformation if for all A P A, T´1pAq P A, and µpT´1pAqq “ µpAq. By
T´1pAq, we mean tx P X : T pxq P Au; this is the preimage of A.

Here is a typical example of a measure-preserving transformation that we will refer to again
in the following sections.

Example 1 (Rotations on the unit circle). Let X “ r0, 1q, and let A be the Lebesgue σ-
algebra on X. Let µ be the Lebesgue measure on X. Let θ be a real number, and consider
the transformation Rθ : X Ñ X, defined by Rθpxq “ px ` θq pmod 1q, or equivalently
Rθpxq “ x ` θ ´ tx ` θu. Let’s check that this transformation is measure-preserving. First,
R´1

θ pAq “ pA´θq pmod 1q, so it’s pretty clear that R´1
θ pAq P A whenever A P A. As for the

measure-preserving property, if A P A, then µpR´1
θ pAqq “ λpA ´ θq “ λpAq “ µpAq, where

λ is the Lebesgue measure on R. Thus Rθ is measure-preserving.
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One good way of thinking about this transformation Rθ is by thinking of X as a circle: take
the half-open interval r0, 1q, and connect the missing endpoint 1 to the present endpoint 0,
so that it wraps around. Then Rθ is a rotation by θ on the circle, where θ is the proportion
of the circumference of the circle. This is often a good way of parametrizing the circle, so
that the full circle has measure 1.

In the future, we’ll write R{Z for X: it consists of the real numbers, except that two real
numbers are considered equal if they differ by an integer.

We now introduce a key result concerning rational and irrational rotations.

2 Rational and Irrational Rotations

In many of the billiard tables we will investigate, we can reduce the dynamics to a measure-
preserving transformation on R{Z, namely rational and irrational rotations.

Proposition 2. The mapping Ra is ergodic if and only if a is irrational.

Proof. To show that that rational rotations are not ergodic, suppose a “ p{q is rational,
with gcdpp, qq “ 1. Then e2πqx is a non-constant measurable function that is invariant under
Ra. Thus Ra is not ergodic. Let A1 and B1 be sets of positive measure. There exist dyadic
intervals I and J such that

λpA1
X Iq ą 3

4
λpIq and λpB1

X Jq ą 3
4
λpJq.

Furthermore, we may assume that I and J are of the same measure (suppose if J is bigger
than I, then at least one of the two halves of J must be 3

4
-full of B1; continue in this way

until obtaining a subinterval of J of the same measure as I that is 3
4
-full of B1, finally rename

it J). Write

A “ A1
X I and B “ B1

X J.

Suppose I “ ra, bq is to the left of J “ rc, dq in R{Z, i.e., a ď c. As the orbit of b under
T :“ Ra is dense, there is an integer n ą 0 such that

d ´ 1
4
pd ´ cq ă T n

pbq ă d.

Therefore λpT npIq X Jq ą 3
4
λpJq. Thus,

λpT n
pAq X Bq ě λpT n

pIq X Jq ´ λpIzAq ´ λpJzBq

ą 3
4
λpJq ´ 1

4
λpIq ´ 1

4
λpJq ą 0.

Therefore T is ergodic. □

3 Billiards

The field of dynamical billiards analyzes the dynamics of the motion of a ball bouncing in a
billiard table, which is bounded by a smooth closed curve. We start by defining dynamical
billiards, and then we dive into some examples.

To start, we first need a table.

Definition 3. A billiard table Q P R2 is an open bounded connected domain such that its
boundary BQ is a finite union of smooth compact curves.
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Once we have the table, we can add a ball, and we can define how the ball moves. We
want these to match what we see on an actual billiard table, which motivates the following
conditions.

The curves comprising the boundary of the billiard table and the velocity vector of the
moving particle satisfy the following conditions.

(1) The path of the ball (represented as moving point) is the union of line segments (i.e. the
ball always travels in a straight line), with consecutive segments sharing one common
endpoint.

(2) Let nppq be the inward pointing normal vector at a point p on the boundary of Q
(denoted as BQ). Define the billiard trajectory to be the segment p1p2, where p1, p2
are the points where the billiard consecutively hits the boundary. Then, the angle of
incidence equals the angle of reflection, i.e. the angle between p1p2 and npp2q (this is the
angle of incidence) is the same as the angle between npp2q and p2p3 (this is the angle of
reflection).

Fig. 1. Billiard trajectories on Bunimovich stadium

The picture above shows the initial billiard trajectories on Bunimovich stadium, a billiard
table created by connecting two semicircles with segments tangent at the endpoints of the
semicircles. The boundary of the stadium is a union of four smooth curves. In this paper,
however, we will mainly focus on the billiard table whose boundary is a single smooth
compact curve.

These conditions result in the trajectory of an ideal billiard on a physical billiard table; the
key point being condition (2).

Now we introduce some definitions to formalize billiards.

Definition 4. A phase space M of the billiard table Q is M “ Q ˆ S1 where Q is the
closure of Q and S1 is the unit circle of all velocity vectors (we are not concerned with the
magnitude of the velocity in this paper). At BQ the velocity vector is always headed inwards.
Given the phase space M we define the flow Φt as the set of all possible billiard trajectories
with the related velocity vectors on M parametrized by time.

Note that S1 is the set of all possible directions of the billiard trajectory. The flow on
the billiard table Q can be thought as a family of billiard trajectories on the closure of the
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billiard table and the velocity vectors of the trajectory along time flow t. Given the following
definitions, we can now define the billiard trajectory as a form of a map.

Definition 5. Let the hypersurface M of the phase space M be defined as follows.

M “ tx “ pp, vq P M | p P BQ, xv, nppqy ě 0u.

The inner product x´,´y is the standard inner product on R2. In other words, M consists
of the set of tuples of points on the boundary of M , together with the possible angles of
incidence. We define the billiard map T : M Ñ M as Tx “ Φτpxqx such that

τpxq “ mintt ą 0 | Φtx P Mu.

In other words, this is the tuple consisting of the next point the ball hits the boundary, and
the corresponding angle of incidence.

The significance of xv, nppqy ě 0 is that the value |v||nppq| cos θ should be positive, i.e. the
angle of incidence is between ´π

2
and π

2
. We put in this condition because otherwise the

trajectory would go outside of M . We may consider the elements pp, vq in M as pφ, θq

where φ denotes the position of a point on BQ and θ denotes the angle of incidence. In the
subsequent sections we will observe how the billiard maps are defined in some of the billiard
tables whose boundary can be considered as a single smooth compact curve.

3.1. Circular Billiards

We start by looking at the simplest dynamical billiard: the circle. We first consider a circular
billiard table Q with radius 1. On the boundary of the billiard table Q, the angle of incidence
has to be between ´π

2
and π

2
. Thus the hypersurface M is BQ ˆ r´π

2
, π
2
s, a cylinder with

radius 1 and height π.

We claim that the billiard map T : M Ñ M is in fact the rotation mapping defined in
section 1.3. This comes from the fact that the angle of incidence is preserved throughout
the whole billiard trajectory as seen from the following proposition.

Theorem 6. The billiard map T : M Ñ M is given by T nx “ pφ ` npπ ´ 2θq, θq.

Fig. 2. Billiard trajectory in a circle.
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Proof. Let the initial starting point of the billiard be A and let the subsequent points the
moving particle contacts with the boundary of the circle be B, C, . . . Let the initial position
at point α be φ and let the initial angle be θ. Since OA “ OB, =OAB “ =OBA. The same
relationship applies between two adjacent contact points. Hence, the angle of incidence is
always θ. Notice that the location of the contact points move along the arc of the circle.
Since =OAB “ =OBA “ θ, =BOA “ π ´ 2θ. Thus through each billiard mapping the
point moves along the arc the distance of π ´ 2θ. □

This shows that billiards in the circle is equivalent to rotations; specifically rotation by 2θ
π
.

If this number is irrational, the billiards is ergodic, while it is periodic otherwise.

Below are some pictures of billiard trajectories for rational and irrational values of 2θ
π
.

Fig. 3. Trajectories for rational and irrational values of 2θ{π

As we can see, there is a small circle inside the trajectory that all of the segments are
tangent to. Note that the trajectory is more dense in the vicinity of this circle, so if we
imagine the billiard is a laser beam and the boundary of the table is a mirror, this region
will be significantly hotter than other areas. We call this circle the caustic, which comes
from the Greek kaiein, which means to burn.

3.2. Circular Ring

Now we add a smaller circle inside the original circle, forming the circular ring.

Definition 7. A billiard table R is called a circular ring if its domain is bounded by two
concentric circles Q1 and Q2 with different radii.

Let the radius of Q1 be r1 and radius of Q2 be r2 such that r1 ą r2. The phase space M in
the circular ring can be defined as

M “ Γ ˆ r´π
2
, π
2
s “ pBQ1 Y BQ2q ˆ r´π

2
, π
2
s

where Γ “ BQ1 Y BQ2 is the boundary of the ring and r´π
2
, π
2
s is the interval of the angle of

incidence.

For the most part, i.e. when the trajectory does not hit the inner ring, billiards on the
circular ring is the same as that on the circle. But even otherwise we can still map this to
rotations in R{Z.
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Theorem 8. Suppose we have a trajectory that hits the inner ring. Let tanu be the sequence
of points on BQ1 and tbnu be the sequence of points on BQ2. Then, let θ be the initial angle
of incidence; i.e. the angle of incidence at a0 (note that r2 ą r1 sin θ). Also define θ1 to be
the angle of incidence at b0. Note that the ball hits the boundary in the order a0, b0, a1, b1, . . ..
We have, for every positive integer n for the billiard map T on R:

T 2n
ppa0, θqq “ T 2n´1

ppb0, θ
1
qq “ pa0 ` 2nr1pθ1

´ θq, θq (3.1)

T 2n`1
ppa0, θqq “ T 2n

ppb0, θ
1
qq “ pb0 ` 2nr2pθ1

´ θq, θ1
q (3.2)

Fig. 4. Billiards on a circular ring Fig. 5.

Proof. We first claim that for every an the angle of incidence is θ. Given the conditions from
the proposition, consider three consecutive points a0, b0, and a1 on the ring. Denote the
center of the circles as point O. Draw line k which passes through point O and point b0 and
line l which is tangent to the inner circle Q2 at point b0. Denote the angle of incidence at
point a1 as θ2.

Assume that θ and θ2 are not the same. Draw two lines parallel to line l; line m which passes
through a0, and line n which passes through a1. Clearly the two lines do not intersect each
other. Denote the intersection of line m and line k as point D and the intersection of line n
and line k as point E. Now draw two lines which are the extension of the segment b0a0 and
b0a1. Call each line i and j respectively. Denote the intersection of line n and line i as point
F and the intersection of line m and line j as point G. Notice that

△Fb0E ” △a1b0E,

which implies △OFb0 ” △Oa1b0. Then OF “ Oa1, so point E should be on the boundary
of the outer circle Q1. This is a contradiction since line m and line n become the same line.
Thus the angle of incidence is θ for every an and θ1 for every bn.

Observe that (Fig. 5.)

=a0Oa1 “ =b0Ob1 “ 2pθ1
´ θq.
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It is clear that for sequence tanu the billiard mapping shifts the points along BQ1 by 2r1pθ
1´θq

while for sequence tbnu the billiard mapping shifts the points along BQ2 by 2r2pθ1 ´ θq.

This completes the proof. □

This shows that circular rings are essentially the same as circles, even when the trajectory
hits the inner circle: if pθ1 ´ θq{2π is rational, the trajectory is periodic, and otherwise the
trajectory is ergodic.

3.3. Ellipses and Other Billiards

Finally, we state a set of results for ellipses; the proofs are rather long, so we will omit them.
The interested reader can refer to [2] for complete proofs.

Theorem 9. Let Q be an elliptical billiard table.

p1q Suppose the trajectory hits one of the foci of the ellipse. Then, the trajectory will
converge to the semimajor axis of the ellipse.

Fig. 5. Trajectory through one of the foci

p2q Suppose the trajectory intersects the line segment connecting the two foci. Then, the
resulting caustic will be a hyperbola with the same foci as the ellipse.

Fig. 6. A “hyperbolic” caustic Fig. 7. An “elliptic” caustic

p3q Suppose the trajectory never intersects the line segment connecting the two foci. Then,
the resulting caustic will be an ellipse with the same foci as the ellipse.

Finally, we include a brief introduction to chaotic billiards.
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3.4. Chaotic Billiards

For an ordinary rectangular billiard table, if two paths start very close together, the deviation
will eventually result in a significant change in the long run, but the growth of this deviation
is a linear function in time. A chaotic billiard, on the other hand, is characterized by
exponential growth in this deviation. One example of a chaotic billiard is the Sinai billiard
(created by putting a circle into the center of a square).

The picture on the left (of the diagram below) shows how two paths that start close together
remain together on a ordinary square billiard table, and the picture on the right shows how
quickly two paths that started close together diverge on the Sinai billiard table.

Fig. 8. “Sinai billiard”, created by putting a circle into the center of a square

For a long time, it was believed that a concave shape was necessary for chaotic behavior.
The reasoning behind this was that a concave shape acts as a dispersing mechanism: the
curvature amplifies the angle between two slightly different trajectories. Thus, it was believed
that a convex billiard table could never be chaotic.

In 1974, Leonid Bunimovich showed this was not true. He proved that the Bunimovich
stadium, described in the beginning of this section, was chaotic even though the boundary
was completely convex. The main idea is that even though the convex semicircles act as a
focusing mechanism, after passing the focusing points, the trajectories in fact diverge, which
is allowed by the length of the straight part of the table. Thus the focusing mechanism
actually acts in reverse as a defocusing mechanism.

However, this reasoning is not sufficient to show that a billiard table is chaotic. In 1973,
Lazutkin showed that any convex table with a differentiable boundary was ergodic. In fact,
he proved it for any convex table whose boundary has 553 continuous derivatives! This
number was later revised to 6 by Douady in 1982, and he conjectured that 4 was enough.
See the blog post [3] for further discussion.

4 A Physical Application

Billiards have many applications to real-world problems. One example is the Sinai billiard,
mentioned in the previous section. The Sinai billiard is a good model for the behavior of
molecules in an ideal gas. In the model of an ideal gas, we consider many tiny molecules
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bouncing inside a square, and off each other. The Sinai billiard gives a simplified, but a very
good illustration of this model.

We can also use a billiard table with one ball to model a physical setup involving two
molecules.

Consider the following setup. There are two molecules, moving in the interval r0, 1s, colliding
elastically with the walls and also with themselves. Let m1,m2 be the masses of the left and
right molecules, respectively, and let x1, x2 be the positions of the molecules. Note that
0 ď x1 ď x2 ď 1 always. Consider a collision between the two molecules. Let v1, v2 be the
velocities before the collision and let w1, w2 be the velocities after the collision. Conservation
of momentum and energy give

m1v1 ` m2v2 “ m1w1 ` m2w2 (momentum)

1
2
m1v

2
1 ` 1

2
m2v

2
2 “ 1

2
m1w

2
1 ` 1

2
m2w

2
2. (energy)

Consider the triangle shaped billiard table with vertices at p0, 0q, p0,
?
m2q, and p

?
m1,

?
m2q.

Fig. 9. Triangle shaped billiard table

Then we identify the point px, yq with the state where the first molecule is at position
x1 “ x

?
m1

and the second is at position x2 “
y

?
m2

. Note that the shape of the triangle

ensures that 0 ď x1 ď x2 ď 1. Solving the momentum and energy equations, we get

w1 “
2m2v2 ` pm1 ´ m2qv1

m1 ` m2

,

w2 “
2m1v1 ` pm2 ´ m1qv2

m1 ` m2

.
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Thus v2 ´ v1 “ w1 ´ w2. Reflection along the hypotenuse of the billiard table gives that

p
?
m1v1,

?
m2v2q ¨ p´

?
m2,

?
m1q “ ´p

?
m1w1,

?
m2w2q ¨ p´

?
m2,

?
m1q

which is equivalent to ´v1 ` v2 “ w1 ´ w2. Thus, this triangle billiard completely describes
the physical system of two molecules bouncing in the interval r0, 1s.

5 Other applications

Billiards have been applied in several areas of physics to model quite diverse real world
systems. Examples include ray-optics, lasers, acoustics, optical fibers (e.g. double-clad
fibers), or quantum-classical correspondence. One of their most frequent application is to
model particles moving inside nanodevices, for example quantum dots, pn-junctions, antidot
superlattices, among others. The reason for this broadly spread effectiveness of billiards
as physical models resides on the fact that in situations with small amount of disorder or
noise, the movement of e.g. particles like electrons, or light rays, is very much similar to the
movement of the point-particles in billiards. In addition, the energy conserving nature of the
particle collisions is a direct reflection of the energy conservation of Hamiltonian mechanics.
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