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1. Topic Summary

The study of Spectral Techniques in Ergodic Theory surrounds the implementation of
eigenvalues in proving the ergodicity of various transformations. We first review fundamental
definitions required for the study of these techniques, and then discuss important results.

2. Introduction to Spectral Techniques

We begin our paper with an introduction of a few definitions used to build the machinery
we use later. The work of spectral techniques generally lies in the following L2 space due
to the nice properties of functions in said space and our ability to define an inner product
(generalized dot product).

Definition 2.1. L2(X,µ) space is the space of measurable functions from X to R that are
square integrable; that is f such that

∫
X
|f |2 dµ < ∞. This space is Hilbert, meaning that

it is a vector space equipped with an inner product ⟨f, g⟩ =
∫
X
fg and corresponding norm√

⟨f, f⟩.

Furthermore, the composition of a function with a transformation T on X can be inter-
preted through a linear algebra sense by using inner products.

Definition 2.2. Let UT (f) := f ◦ T , where T is a measure preserving transformation. This
is an isometry (function preserving inner product) on L2, as ⟨UT (f), UT (g)⟩ =

∫
X
(fg) ◦ T =∫

X
(fg) = ⟨f, g⟩.

The last definition we introduce to start off allows us to understand functions in terms of
our linear algebra tools, which we will later apply to measurable functions.

Definition 2.3. If f : X → C; f ∈ L2 satisfies f ◦T = λf , f is called an eigenfunction, and
λ is an eigenvalue. H(T ) := {λ ∈ C : f ◦ T = λf} is the point spectrum, which consists of
the eigenfunctions corresponding to T .

Note that when λ = 1, this is equivalent to f being T -invariant.

3. Ergodicity and Spectrality

A problem important to Ergodic Theory is determining whether two probability preserving
spaces are equivalent measure theoretically. In class, we analyzed the uniqueness of measures,
in particular invariant measures. Here, we will look at invariants on the weaker condition of
spectral isomorphism as this condition is better understood.
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Definition 3.1. Two probability preserving spaces (X,A, µ, T ), (Y,B, µ, S) (probability
spaces equipped with measure preserving transformations T and S respectively) are said to
be spectrally isomorphic if there exists a linear operator W : L2(X,µ) → L2(Y, v) such that
the following hold:

1. W is invertible
2. ⟨Wf,Wg⟩ = ⟨f, g⟩ for all f, g ∈ L2(X,µ)
3. WUT = USW
It is natural to show that spectral isomorphism is an equivalence relation, which can be

seen through using the fact that inverses and compositions of linear operators satisfying our
given conditions must also satisify all three of the conditions (albeit for different spaces).
Thus, it also makes sense to define relations that hold for all/no spaces in a given equivalency
class.

Definition 3.2. A property of a probability preserving space is a spectral invariant if it
holds for all spaces that are spectrally isomorphic to it as well

For example, ergodicity and mixing are upheld under spectral isomorphism

Proof. In Chapter 6, Proposition 4.3, we proved that ergodicity is equivalent to T−invariant
measurable functions being only those which are constant. Say T is ergodic. Then, if
function g is S-invariant in (Y,B, ,̌S), its preimage g∗ under W must be T -invariant as
g ◦ S = US(g) = USW (g∗) = W (g∗ ◦ T ) as desired, and reversing directions (due to the
symmetry of spectral isomorphism) is sufficient.

Mixing can similarly be proven to be a spectral isomorphism, equivalent to ergodicity
plus the following: limn→∞⟨f, Un

T g⟩ = ⟨f, 1⟩⟨g, 1⟩ (for f, g ∈ L2(X,µ)). Note that when we
rewrite this without the inner products and in terms of simple functions, this is equivalent to
our book definition. When we replace f and g with Wf and Wg, we get our desired result
using property 2 of W . ■

Similarly, our aforementioned point spectrum H(T ) is a spectral invariant as well, which
follows from W commuting with UT and US depending on the direction. To apply this to
the study of ergodicity, we need to show some important properties of the point spectrum:

Proposition 3.3. Let (X,A, µ, T ) be an invariant probability measure space, where T is
ergodic. Then:
(1) UTf = λf ; f ∈ L2µ → |λ| = 1, |f | constant with respect to UT

(2) Eigenfunctions that correspond to different eigenvalues are orthogonal
(3) If f, g are both eigenfunctions for λ such g ̸= 0 almost everywhere, then f = cg for some
constant c (a.e.)
(4) The eigenvalues form a subgroup of the unit circle

Proof.
(1) Note first that |λ| = 1 as T is measure preserving, which we showed alongside Definition
2.2. Thus, |Un

T f | = |f | is constant as desired.
(2) Let UTf = λ1f , UTg = λ2g. Note that ⟨f, g⟩ = ⟨UTf, UTg⟩ = λ1λ2⟨f, g⟩, which implies
either λ1 = λ2 or ⟨f, g⟩ = 0 as desired.
(3) If |g| ≠ 0 almost everywhere, then note that h = f

g
is a T -invariant function and thus

constant almost everywhere as well by ergodicity



SPECTRAL TECHNIQUES 3

(4) If f ◦ T = λ1f and g ◦ T = λ2f , we have f ◦ T = λ1f , and that (fg) ◦ T = λ1λ2(fg),
so all properties of a group are fulfilled (identity element and associativity are trivial in this
example). ■

Note that we only used properties of ergodicity in proving property 3; the rest of these
properties hold when T is measure preserving in general.

We can also view the types of spectra, which are also invariant under spectral isomorphism.

Definition 3.4. (Types of spectra (Def 3.4 of [2])) Given a probability preserving space
(X,A, µ, T ), let Vd =span eigenfunctions. We say (X,A, µ, T ) has
1) Discrete Spectrum if Vd = L2.
2) Continuous Spectrum if Vd is the set of constants.
3) Mixed Spectrum if Vd is neither of the above.

For example, we can show that irrational rotations have discrete spectrum; consider the
rotation Rα on R/Z, and let fn(x) = nx, so fn(αx) = nα+nx. By Theorem 9.7 of [1], the set
of fn forms a basis of L2(R/Z, µ), which is essentially equivalent to saying L2 functions can
be approximated by trigonometric polynomials (which follows from the Cesaro convergence
of fourier series, though that is a topic for a different day), so Rα has a discrete spectrum.
In fact, a similar argument can be made for general compact abelian groups and their Haar
measure by considering the functions fa : G → G sending x to ax (see [1] for more details).
Meanwhile, mixing transformations have continuous spectrum, as any non-constant eigen-

function f with eigenvalue λ has ⟨f, Unk
T ⟩ → ||f ||22 ̸= (

∫
X
f)2 =

∫
X
f
∫
X
f ◦ T nk , where

the nk are an increasing subsequence of positive integers such that λnk → 1 as k → ∞.
Note that the non-equality comes from applying Cauchy’s Inequality and using the fact f is
non-constant.

4. Spectral Techniques and Weak Mixing

We will now discuss the applications of spectral techniques in the study of weak mixing.
An important theorem to start us off in our study is the following:

(3.1, modified from [3] ) The following conditions are equivalent for a probability preserving
system (X,A, µ, T ) on a Lebesgue space
1) Weak mixing
2) For every A,B ∈ A, there exists N ∈ N of density 0 such that µ(A ∩ T−nB) → µ(A)µ(B)
3) T × T is ergodic (on the space (X ×X,A×A, µ× µ, T × T )
4) Any eigenfunction f ∈ L2(X,µ) is constant almost everywhere.

Proof. As an exercise in chapter 8, we proved that condition 1 implies condition 2 and vice
versa (as weak Cesaro convergence is equivalent to convergence except on a set of measure 0).
Furthermore, by then applying part b of exercise 14 in chapter 8, the first three conditions
of this problem are equivalent.

Now, we show condition 3 implies condition 4. Suppose T is not weak mixing. Then, T
has a non-constant eigenfunction f with eigenvalue λ. Then, F (x, y) = f(x)f(y) is T × T

invariant, as (T × T )F (x, y) = λλf(x)f(y) = f(x)f(y) = F (x, y). However, F must then be
non-constant, which is a contradiction to the ergodicity of T ×T as any T -invariant function
is constant (Chapter 6, Prop 4.3 again). ■
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Definition 4.1. An atom on a measure space (X,A, µ) is a set A with non-zero measure
such that for any measurable subset B of A, µ(B) = µ(A) or 0. A measure space is said to
be non-atomic if it has no atoms (such as R with the Lebesgue measures)

Definition 4.2. The spectral measure of f ∈ L2 \ 0 is the unique measure vf on S1 (the
unit circle) such ⟨f ◦ T n, f⟩ =

∫
S1 z

n dvf for n ∈ Z.

Proposition 4.3. If T is weak mixing on a Lebesgue probability space, then all spectral
measures of f ∈ L2 such that

∫
f ̸= 0 are non-atomic.

Proof. See Proposition 3.3 of [3] ■

Why is this important? The following theorem shows the significance of non-atomicity:

Theorem 4.4. Isomorphism Theorem - A.2 of [3] Every non-atomic standard probability
space is isomorphic to the unit interval equipped with the Lebesgue measure.

We now work on a theorem whose proof revolves around tools been built up throughout this
paper:

Proposition 4.5. (3.4) in [2] If T is weak-mixing, then for all f, g ∈ L2, limN→∞
1
N

∑N−1
k=0 |

∫
g(f◦

T n)dµ− (
∫
fdµ)(

∫
gdµ) = 0

We first begin with the following lemma:

Lemma 4.6. If T is weak mixing, then for every f ∈ L2, we have 1
n

∑n−1
k=0 |

∫
X
f ·(f ◦T n) dµ−

(
∫
X
f dµ)2| → 0 as n → ∞. This is equivalent to saying Proposition 4.3 holds when f = g.

Proof. We only need to consider the case where
∫
f ̸= 0 by shifting it by a constant.

Now, letting vf be the spectral measure, we find that 1
N

∑N−1
k=0 |

∫
X
f · (f ◦ T n) dµ|2 =

1
N

∑N−1
k=0 |⟨Un

T f, f⟩|2 = 1
N

∑N−1
k=0 |

∫
S1
zn dvf (z)|2 = 1

N

∑N−1
k=0 (

∫
S1
zn dvf (z))(

∫
S1
zn dvf (z)) =

1
N

∑N−1
k=0 (

∫
S1

∫
S1
znwn dvf (z)vf (w) =

∫
S1

∫
S1

1
N

∑N−1
k=0 znwn. Each term in the integrand tends

to 0 except when w = z, in which case it is 1. However, the set where w = z has measure 0
wrt to S1 × S1, so when we sum our integral overall it approaches 0 as N → ∞ (however,
this requires some precision since we use the fact vf is non-atomic in doing so).

■

We now conclude the proof of our proposition

Proof. First, assume T is invertible, and thus UT is as well. Fix f ∈ L2 and let S(f) :=
span{Uk

Tf : k ∈ Z}. Note that as L2 is a vector space, we can write it as L2 = S(f) +
(S(f) + c1)

⊥ + c2, where ci denotes a constant function (we have to be careful to include
constants in this example). By our lemma, any g ∈ S(f) instantly satisfies our claim, as it
can be expressed as a linear combination of Uk

Tf which satisfy our result as well by T being
measure preserving. Similarly, constants also satisfy our proposition, so it is sufficient to
show that functions g orthogonal to S(f) + c1 satisfy the proposition. However, this follows
from ⟨g, f ◦ T n⟩ approaching 0 (which is equivalent to our first integral).

If T is NOT invertible, we can find an extension T that is invertible on a larger probability
preserving space, and thus satisfies our proposition. Using some manipulations (see 3.4 of
[3]), T must then also satisfy the proposition. ■
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