
THE HAAR MEASURE ON A LOCALLY COMPACT GROUP

PETER POWELL

Abstract. In this paper we introduce and define the Haar measure on a

locally compact group G. We give some properties of integration with respect

to a Haar measure and then prove that on any locally compact group there
exists an essentially unique Haar measure. Finally, we give several examples

of this measure on different locally compact groups.

1. Introduction and Motivation

One of the most important properties of the Lebesgue measure λ on Rn is that
of translation invariance:

λ(x+A) = λ(A)

for all x ∈ Rn and measurable A. One way to think about this property is that it
says that λ is uniform; it assigns the same weight to each point. This is because
the sets A and x+A are essentially the same set, just at different points in space.
Clearly, a uniform measure should be one for which the measures of these sets are
the same.

The Haar measure is an extension of this idea to a very general setting, namely
that of topological groups. A topological group is a set with both a topology and
group structure, along with a couple compatibility conditions connecting the two,
which will be stated in Section 3. In general a topological group G may not be
commutative, so we have two different kinds of Haar measures, ones which satisfy
translation invariance on the left and ones which satisfy translation invariance on
the right. More precisely, we say that µ is a left Haar measure if it satisfies some
“niceness” conditions and

µ(gA) = µ(A)

for all g ∈ G and measurable A, and we make an analogous definition for right Haar
measures.

Unlike with Rn, it may not be immediately obvious why translation invariance
is a good way to formalize the idea of a uniform measure in this general setting.
However, this does make sense. Given a topological group G, Cayley’s Theorem
tells us that as a group, G is isomorphic to a group of symmetries, namely the
translations Tg : G → G sending x to gx. The compatibility conditions for a
topological group ensure that these translations preserve the topological structure
of G. We can thus think of the group structure on G as defining a group of
symmetries of G as a topological space. A Haar measure can then be thought of
naturally as a measure which respects these symmetries, i.e. a measure obtained
by assuming these symmetries to be measure-preserving.
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As we will show in Section 5, it turns out that on any sufficiently nice (locally
compact and Hausdorff) topological group, there always exists a left Haar measure.
Further, this measure is unique up to multiplication by a positive constant.

2. Topological Preliminaries

In this section we give a quick list of definitions and theorems from point-set
topology which we will need to properly discuss the Haar measure. For proofs of
the theorems, see [6].

Definition 1. A topological space is an ordered pair (X, τ), where X is a set and
τ is a collection of subsets of X satisfying the following properties:

(i) ∅ ∈ τ and X ∈ τ
(ii) If {Uα} is any collection of elements of τ , then

⋃
α Uα ∈ τ .

(iii) If Ui ∈ τ for i = 1, 2, . . . , n, then ∩n
i=1Ui ∈ τ .

If the reference to the topology is clear, then we often refer to X alone as a
topological space.

Definition 2. If (X, τ) is a topological space, then the elements of τ are called
open sets. A set E ⊂ X is called closed if its complement Ec is open.

It is not difficult to show that the intersection of an arbitrary family of closed sets
is closed and the finite union of closed sets is closed. In fact, one can equivalently
define a topology by specifying a set of closed sets which satisfy these properties,
along with the property that ∅ and the whole set are closed.

Example 3. If X is any set, the discrete topology is defined to be the topology such
that every subset of X is open. The indiscrete topology is the topology containing
only the sets X and ∅.

Definition 4. If A ⊂ X is a subset of a topological space, then the closure of A,
denoted A is defined to be the intersection of all closed sets containing A. Similarly,
the interior of A, denoted A◦ is defined as the union of all open sets contained in
A.

By definition, an arbitrary union of open sets is open, so the interior of A can be
thought of as the largest open set contained inA. Similarly, an arbitrary intersection
of closed sets is closed, so it follows that the closure of a set A is closed and can
thus be interpreted as the smallest closed set containing A.

Definition 5. If X is a topological space and x ∈ X, then an open neighborhood
of x is an open set U with x ∈ U .

Definition 6. If X and Y are topological spaces and f : X → Y is a function,
then f is said to be continuous if f−1(U) is an open set for all open sets U ⊂ Y .

Theorem 7. If X, Y , and Z are topological spaces, f : X → Y is continuous, and
g : Y → Z is continuous, then g ◦ f : X → Z is continuous.

Definition 8. A function f : X → Y between two topological spaces is said to be a
homeomorphism if f is continuous and there exists a continuous function g : Y → X
such that g ◦f = idX and f ◦g = idY , where idX and idY are the identity functions
on X and Y , respectively.
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If there exists a homeomorphism between two topological spaces X and Y , then
X and Y are said to be homeomorphic. It is not difficult to verify that the notion
of homeomorphic spaces is an equivalence relation.

Definition 9. Let f be a complex-valued continuous function on a topological
space X. The support of f is defined to be

supp(f) = {x ∈ X | f(x) ̸= 0},
i.e. it is the closure of the set of points at which f is nonzero.

Definition 10. A topological space X is said to be Hausdorff if for any two
distinct points x, y ∈ X, we can find disjoint open sets U and V containing x and
y, respectively.

Definition 11. A subset K of a topological space X is said to be compact if every
open cover of K has a finite subcover. More precisely, we require that if {Uα} is any
collection of open sets whose union contains K, there there exists a finite number
of sets in {Uα} whose union contains K. If X itself is compact, then X is said to
be a compact space.

Theorem 12. If X is a topological space and K1, K2, . . . , Kn are compact, then⋃n
i=1 Ki is compact.

Theorem 13. Let X and Y be topological spaces and let f : X → Y be continuous.
Then, if K ⊂ X is compact, f(K) ⊂ Y is compact.

Theorem 14. If K is a compact subset of a Hausdorff space, then K is closed.

Theorem 15. If K is compact and A ⊂ K is closed, then A is compact.

Theorem 16. Let X be a Hausdorff space, and let K1 and K2 be compact subspaces
of X. Then, if K1 ∩K2 = ∅, we can find open sets U1 ⊃ K1 and U2 ⊃ K2 such
that U1 ∩ U2 = ∅.

Definition 17. A topological space X is said to be locally compact if every point
in X has a neighborhood which is contained in a compact set.

We note that if a topological space X is Hausdorff, then the previous definition
is equivalent to saying each point in X has an open neighborhood with compact
closure, by Theorems 14 and 15.

Definition 18. Let X be a set and let A be a collection of subsets of X. Then
A is said to have the finite intersection property if for all A1, A2, . . . , An ∈ A,⋂n

i=1 Ai ̸= ∅.

Theorem 19. Let X be a topological space. Then X is compact if and only if for
any collection of closed sets F having the finite intersection property, the intersec-
tion

⋂
F∈F F is nonempty.

Definition 20. Let Xi be a topological space for all i ∈ I, then the set
∏

i∈I Xi

inherits a natural topology, called the product topology, which is defined to be the
smallest topology containing all sets of the form

∏
i∈I Ui, where each Ui ⊂ Xi is

open and Ui = Xi for all but finitely many values of i.

Theorem 21. Let X =
∏

i∈I Xi, where Xi is a topological space for all i ∈ I, and
endow X with the product topology. Then, each projection map πi : X → Xi is
continuous.
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Theorem 22. Let X be a topological space, let Yi be a topological space for all
i ∈ I, and let Y =

∏
i∈I Yi be the product space. Then, a function f : X → Y

is continuous if and only if πi ◦ f : X → Yi is continuous for all i ∈ I, where
πi : Y → Yi is the projection map.

Theorem 23 (Heine–Borel). A set A ⊂ Rn is compact in the product topology if
and only if A is closed and bounded.

Theorem 24 (Tychonoff’s Theorem). If Xi is a compact topological space for all
i ∈ I, then

∏
i∈I Xi is compact in the product topology.1

Definition 25. If X is a topological space and S ⊂ X, then S inherits a natural
topology called the subspace topology by defining the open sets of S to be sets of
the form U ∩ S, where U is open in X.

We will also prove a lemma which we will need later.

Lemma 26. Let X be a Hausdorff space, let K be a compact subset of X, and
let U1 and U2 be open sets such that K ⊂ U1 ∪ U2. Then there exist compact sets
K1 ⊂ U1 and K2 ⊂ U2 such that K = K1 ∪K2.

Proof. Let L1 = K − U1 and L2 = K − U2. K is closed by Theorem 14, so L1 and
L2 are closed. Since L1 and L2 are closed subsets of the compact set K, L1 and L2

are compact by Theorem 15. Since L1 and L2 are disjoint compact sets, Theorem
16 says we can find disjoint open sets V1 ⊃ L1 and V2 ⊃ L2. Let K1 = K − V1

and K2 = K − V2. K1 and K2 are compact because they are closed subsets of the
compact set K. Also, since V1 and V2 are disjoint, K1 ∪K2 = K. Finally, we have

K1 = K−V1 ⊂ K−L1 = K∩Lc
1 = K∩ (K∩U c

1 )
c = K∩ (Kc∪U1) = K∩U1 ⊂ U1,

and similarly K2 ⊂ U2. □

3. Topological Groups and the Haar Measure

A topological group is essentially just a set G with both a topology and a group
structure. However, this alone is uninteresting; in general we couldn’t do much more
than study the topological structure and group structure of such a set separately.
What we really want is a set which has a topology and a group structure which
interacts nicely with this topology. This is encapsulated in the following definition.

Definition 27. A topological group is a topological space G which is also a group
such that the map (x, y) → xy from G × G to G and the inversion map x → x−1

from G to G are both continuous.

An important fact that follows directly from this definition is that for all g ∈ G,
the translation map Tg : G → G sending x to gx is a homeomorphism, since it is
continuous and has continuous inverse Tg−1 .

Example 28. Any finite group G with the discrete topology is a topological group
because all functions from a discrete space are continuous.

Example 29. Rn with its standard topology and additive group structure is a topo-
logical group because the functions (x, y) → x+ y and x → −x are continuous.

1The axiom of choice is necessary to prove this result in general. However, the case of only
finitely many spaces Xi is true even without assuming the axiom of choice.
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Example 30. The multiplicative group of positive real numbers R>0 is a topological
group with the subspace topology inherited from R, because the functions (x, y) →
xy and x → 1

x are continuous on R>0.

The definition of a topological space is very general, which allows for many types
of pathological spaces. For this reason, we often need to add several assumptions
when working with general topological spaces. For the Haar measure, we need
our topological space to be both Hausdorff and locally compact, both of which are
properties satisfied by basically all sufficiently nice spaces. To simplify terminology,
we make the following definition.

Definition 31. A locally compact group is a topological group for which the un-
derlying topology is locally compact and Hausdorff.

We are now ready to give the full definition of a Haar measure.

Definition 32. A left Haar measure is a measure µ, not identically 0, defined
on the Borel sets of a locally compact group G and satisfying the following four
properties:

(1) µ is left-translation-invariant: µ(gE) = µ(E) for Borel sets E and all g ∈ G.
(2) µ(K) < ∞ for all compact sets K.
(3) µ is outer regular: for all Borel sets E,

µ(E) = inf{µ(U) | E ⊂ U,U open}.

(4) µ is inner regular: for all open sets U ,

µ(U) = sup{µ(K) | K ⊂ U,K compact}.

A measure defined on the Borel sets of a topological space which satisfies prop-
erties (2), (3), and (4) is called a regular Borel measure. This is essentially a
continuity property, which says that sets can be approximated from the outside
with open sets and approximated from the inside with compact sets. A right Haar
measure is defined analogously. Clearly, left and right Haar measures coincide when
the locally compact group G is abelian. In fact, it turns out that left and right Haar
measure also coincide if the group G is compact, although this is not obvious. See
[3] for example.

The most important result about Haar measures is that every locally compact
group has a left Haar measure, and this measure is unique up to multiplication by
a positive constant. We will prove this in Section 5.

Example 33. If G is any finite group with the discrete topology then the Haar
measure on G is, up to multiplication by a positive constant, the counting measure:

µ(A) = |A|

for all A ⊂ X.

Example 34. The Haar measure on Rn for which the cube [0, 1]n has measure 1 is
the restriction of the Lebesgue measure to Borel sets.

Example 35. The Haar measure on the multiplicative group of positive real numbers
R>0 is the measure

µ(A) =

∫
A

1

t
dt
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Translation invariance of this measure by some x ∈ R>0 follows from the substitu-
tion t = xu:

µ(xA) =

∫
xA

1

t
dt =

∫
A

1

xu
· x du =

∫
A

1

u
du = µ(A).

For more examples see Section 6. We finish this section by proving a couple
results about topological groups which we will need to prove the existence and
uniqueness of the Haar measure.

Theorem 36. Let G be a topological group and let U be an open set containing
the identity element e ∈ G. Then there exists an open set V containing the identity
such that V V ⊂ U .

Proof. Let f : G×G → G denote the group operation map, i.e. f(x, y) = xy. Since
U is open and f is continuous,

f−1(U) = {(x, y) ∈ G×G | xy ∈ U}.

Note that (e, e) ∈ f−1(U) because e ∈ U . By definition of the product topology,
we can find open sets V1, V2 ⊂ G such that V1 × V2 ⊂ f−1(U) and (e, e) ∈ V1 × V2,
meaning e ∈ V1 and e ∈ V2. It follows that V = V1∩V2 is an open set containing e.
Finally, we have V V ⊂ U because for all v1, v2 ∈ V , (v1, v2) ∈ V1 × V2 ⊂ f−1(U),
so v1v2 ∈ U . □

Theorem 37. Let G be a topological group, let K ⊂ G be compact, and let U ⊃ K
be open. Then there exists an open set V containing the identity of G such that
KV ⊂ U .

Proof. For each x ∈ K, letWx = x−1U , which is an open set containing the identity.
By Theorem 36, we can choose an open set Vx containing the identity such that
VxVx ⊂ Wx. It follows that the collection of sets {xVx | x ∈ K} is an open cover of
K. Since K is compact, we can find finitely many points x1, x2, . . . , xn ∈ K such
that K ⊂

⋃n
i=1 xiVxi . Finally, define V =

⋂n
i=1 Vxi , which we claim satisfies the

desired property. Indeed, for all x ∈ K, we can find some xi such that x ∈ xiVxi

and thus

xV ⊂ xiVxiV ⊂ xiVxiVxi ⊂ xiWxi = U.

It follows that KV ⊂ U . □

4. The Haar Integral

If µ is a Haar measure on a locally compact group G, then using the general
theory of integration with respect to a measure, we can define an integral of any
Borel measurable function on G with respect to µ. This integral is called the Haar
integral. The translation invariance of the Haar measure gives us a very useful
property of this integral:

Theorem 38. If µ is a left Haar measure on a locally compact group G then for
all functions f ∈ L1(µ) and x ∈ X,∫

G

f(x) dµ(x) =

∫
G

f(gx) dµ(x).
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Proof. First consider the case when f = χE is the characteristic function for some
Borel set E. We then have∫

G

χE(x) dµ(x) = µ(E) = µ(g−1E) =

∫
G

χg−1E(x) dµ(x) =

∫
G

χE(gx) dµ(x),

since χE(gx) = χg−1E(x). The theorem then immediately follows for all measurable
simple functions on G.

Now, if f : G → [0,∞] is any positive Borel measurable function, then we can find
a sequence of simple measurable functions si(x) such that 0 ≤ s1(x) ≤ s2(x) ≤ · · · ≤
f(x) and sn(x) → f(x) as n → ∞ for all x ∈ G. It follows that the functions si(gx)
are simple measurable functions which satisfy 0 ≤ s1(gx) ≤ s2(gx) ≤ · · · ≤ f(gx)
and sn(gx) → f(gx) as n → ∞ for all x ∈ G. Lebesgue’s monotone convergence
theorem applied to each of these sequences then gives∫

G

f(x) dµ(x) = lim
n→∞

∫
G

sn(x) dµ = lim
n→∞

∫
G

sn(gx) dµ =

∫
G

f(gx) dµ(x).

The theorem then follows for any complex function f ∈ L1(µ) by writing f =
u+ − u− + iv+ − iv−, where u+, u−, v+, and v− are all positive Borel measurable
functions. □

Interestingly, it turns out that on a locally compact group G, any function which
has some basic integral properties (positive, linear, and defined on the set of all
continuous functions with compact support) and satisfies the above property, must
be an integral with respect to a Haar measure. To show this, we first need some
definitions.

Notation 39. The collection of all continuous complex functions with compact sup-
port on a topological space X is denoted Cc(X).

It is not difficult to verify that Cc(X) is a vector space for any topological space
X.

Definition 40. A positive linear functional on Cc(X) is a linear map Λ : Cc(x) → C
such that Λ(f) is real and nonnegative for any nonnegative f ∈ Cc(X).

Definition 41. A left-invariant integral on a locally compact group G is a positive
linear functional Λ : Cc(G) → C with the additional property that Λ is invariant
under the group operation:

Λ(f(x)) = Λ(f(gx))

for all g ∈ G and f ∈ Cc(G).

Note that the property that Λ is invariant under the group operation is exactly
what Theorem 38 says for integration with respect to a Haar measure. We will also
need the following well-known theorems.

Theorem 42 (Riesz Representation Theorem). Let X be a locally compact Haus-
dorff topological space, and let Λ be a positive linear functional on Cc(X). Then
there exists a unique regular Borel measure µ such that

Λ(f) =

∫
X

f dµ

for all f ∈ Cc(X).
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Theorem 43 (Urysohn’s Lemma). Suppose X is a locally compact Hausdorff space,
V is open in X, K ⊂ V , and K is compact. Then there exists an f ∈ Cc(X) such
that 0 ≤ f(x) ≤ 1 for all x ∈ X, f(x) = 1 for all x ∈ K, and the support of f is
contained in V .

For proofs of these, see [7]. We can now show the following:

Theorem 44. Let G be a locally compact group and suppose Λ : Cc(G) → C is a
left-invariant integral. Then there exists a unique Haar measure µ such that

Λ(f) =

∫
G

f dµ

for all f ∈ Cc(G).

Proof. By Theorem 42, we know there exists a unique measure µ such that Λ(f) =∫
G
f dµ for all f ∈ Cc(G). Properties (b), (c), and (d) of Theorem 42 show that µ

restricted to Borel sets satisfies properties (2), (3), and (4) of a left Haar measure.
We thus only need to show that µ is left translation invariant. We first show this
for open sets. Let V ⊂ G be open, let g ∈ G be arbitrary, and let ϵ > 0 be given.
By the regularity of µ, we can find a compact set K ⊂ V such that

µ(V )− µ(K) < ϵ.

Now, by Urysohn’s lemma, we can find some f ∈ Cc(G) such that

χK(x) ≤ f(x) ≤ χV (x)

for all x ∈ X. Replacing x with g−1x, this gives

χgK(x) ≤ f(g−1x) ≤ χgV (x)

Integrating both these inequalities over G, we find

µ(K) ≤
∫
G

f(x) dµ(x) = Λ(f) ≤ µ(V ).

µ(gK) ≤
∫
G

f(g−1x) dµ(x) = Λ(f) ≤ µ(gV ).

It then follows that

µ(gV ) ≥ Λ(f) ≥ µ(K) > µ(V )− ϵ.

Since ϵ > 0 was arbitrary, this implies µ(gV ) ≥ µ(V ). Now, by the same argument
but replacing g with g−1 and V with gV , we get the reverse inequality, µ(V ) ≥
µ(gV ). Thus,

µ(gV ) = µ(V ),

so µ is left translation invariant on open sets. Now let E ⊂ X be any Borel set. By
the regularity of µ, we have

µ(E) = inf{µ(V ) | E ⊂ V, V open}

and

µ(gE) = inf{µ(V ) | gE ⊂ V, V open}.
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Since the translation map x → gx is a homeomorphism, it follows that V is an open
set containing E if and only if gV is an open set containing gE. Thus, using the
fact that µ(gV ) = µ(V ) for all open sets V ,

µ(E) = inf{µ(V ) | E ⊂ V, V open}
= inf{µ(gV ) | E ⊂ V, V open}
= inf{µ(V ) | gE ⊂ V, V open}
= µ(gE),

as desired. □

5. Existence and Uniqueness of the Haar Measure

The goal of this section is to prove the existence and uniqueness of the Haar
measure on any locally compact group G. The proof here is based on [4], [5], and
[2], and uses the axiom of choice in the form of Tychonoff’s theorem. However, it
is possible to prove without this, as in [1], although this is more difficult.

Theorem 45. On any locally compact group G there exists at least one left Haar
measure.

Proof. We start with a definition.

Definition 46. If K ⊂ G is compact and V ⊂ G has nonempty interior V ◦, then
we define the quantity (K : V ) to be the smallest nonnegative integer n such that
there exist g1, g2, . . . , gn ∈ G satisfying

K ⊂
n⋃

i=1

giV
◦.

In other words, (K : V ) is the smallest number of translates of V ◦ that cover
V . This quantity is always well defined and finite, since for all such K and V ,
the set {gV ◦ | g ∈ G} is an open cover of G, and hence K. By compactness of
K there exists a finite subcover, implying (K : V ) is finite. The existence of a
minimum number of translates of V ◦ that cover V then follows since the set of
natural numbers is well-ordered.

The idea is that for an open set U , (K : U) measures the size of K with the set
U , and we can get more accurate values of this size by taking U to be smaller. Of
course, if we simply take a limit as U gets smaller, the quantity (K : U) might just
go to infinity, so we first need to normalize. Thus, choose some compact set K0

with nonempty interior. Then, (K0 : U) > 0 for all open sets U . For all open sets
U , we can now define a function hU on the compact sets K ⊂ G by

hU (K) =
(K : U)

(K0 : U)
.

hU (K) is essentially the size of K relative to K0, measured using the set U . The
idea is to take a sort of limit as U gets small, although it’s not obvious how to do
this.

First, we restrict our attention to the collection of open sets U which contain the
identity of G. Let U denote this collection of sets. We don’t really lose anything by
doing this because for any open set U , we can find some g ∈ G such that gU ∈ U
and then hgU (K) = hU (K) for all K. The benefit of restricting our attention to
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U is that we now have a directed family of subsets: for all U1, U2 ∈ U we have
U1 ∩ U2 ∈ U and U1 ∩ U2 is smaller than U1 and U2.

Before we proceed, it will be helpful to prove a few properties of hU .

Lemma 47. Let U ∈ U , let K,K1,K2 be compact, and let g ∈ G. Then,

(1) 0 ≤ hU (K) ≤ (K : K0).
(2) hU (gK) = hU (K).
(3) If K1 ⊂ K2, then hU (K1) ≤ hU (K2).
(4) hU (K1 ∪K2) ≤ hU (K1) + hU (K2).
(5) If K1U

−1 ∩K2U
−1 = ∅ then hU (K1 ∪K2) = hU (K1) + hU (K2).

Proof.

(1) The inequality 0 ≤ hU (K) is obvious. Now, let m = (K : K0) and n =
(K0 : U). Then choose g1, g2, . . . , gm ∈ G such that K ⊂

⋃m
i=1 giK

◦
0 and

choose h1, h2, . . . , hn ∈ G such that K0 ⊂
⋃n

i=1 hiU . We then have

K ⊂
m⋃
i=1

giK
◦
0 ⊂

m⋃
i=1

n⋃
i=1

gihiU

and thus

(K : U) ≤ mn

by definition. Dividing this by m ̸= 0, we obtain

hU (K) ≤ (K : K0).

(2) We note that given a cover of K by translates of U , we can translate each
set in this cover by g to get a cover of gK by the same number of translates
of U . Conversely, given a cover of gK by translates of U , we can translate
each set in this cover by g−1 to get a cover of K by the same number of
translates. It follows that (K : U) = (gK : U) and thus hU (gK) = hU (K).

(3) Suppose that K1 ⊂ K2. Then, for all U ∈ U , any covering of K2 by
translates of U is a covering of K1 by translates of U , so (K1 : U) ≤ (K2 :
U). Dividing by (K0 : U), we get hU (K1) ≤ hU (K2) for all U ∈ U .

(4) Take an open cover of K1 with (K1 : U) translates of U and take an open
cover of K2 with (K2 : U) translates of U . The union of these covers is
then an open cover of K1 ∪K2 with (K1 : U) + (K2 : U) translates of U .
Thus,

(K1 ∪K2 : U) ≤ (K1 : U) + (K2 : U)

which implies hU (K1 ∪K2) ≤ hU (K1) + hU (K2).
(5) Suppose that K1 and K2 satisfy K1U

−1 ∩ K2U
−1 = ∅. The condition

K1U
−1∩K2U

−1 = ∅ is the same as saying that no translate of U intersects
bothK1 andK2. Now, choose a cover ofK1∪K2 by (K1∪K2 : U) translates
of U . By the condition K1U

−1 ∩ K2U
−1 = ∅, each translate intersects

exactly one of K1 and K2. Let g1U , g2U , . . . , gnU be the translates that
intersect K1 and h1U , h2U , . . . , hmU be the translates that intersect K2,
with m + n = (K1 ∪K2 : U). It follows that the sets g1U , g2U , . . . , gnU
cover K1 and the sets h1U , h2U , . . . , hmU cover K2, so (K1 : U) ≤ n and
(K2 : U) ≤ m. We thus have

(K1 : U) + (K2 : U) ≤ n+m = (K1 ∪K2 : U),
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which gives hU (K1) + hU (K2) ≤ hU (K1 ∪ K2). We showed the opposite
inequality in the previous part, so it follows that hU (K1) + hU (K2) =
hU (K1 ∪K2).

□

We now define a new function h by taking a sort of limit of hU as U gets
smaller. Let K denote the set of compact subsets of G. Since by Lemma 47,
0 ≤ hU (K) ≤ (K : K0), we can consider each function hU for U ∈ U as a point in
the set X =

∏
K∈K[0, (K : K0)]. Endowed with the product topology, X is compact

by Tychonoff’s Theorem (Theorem 24). For each V ∈ U , define the set C(V ) ⊂ X
by

C(V ) = {hU | U ∈ U , U ⊂ V }.
i.e. the set C(V ) is the set of functions hU for U smaller than V (along with all
limits of sequences of such functions, since we are taking the closure). We want
a measure h which is in some sense the limit of the measures hU as U gets small,
so we better have h ∈ C(V ) for all V , i.e. h ∈

⋂
V ∈U C(V ). To show that such a

measure actually exists, meaning that this intersection is nonempty, we will show
that the collection of sets {C(V )}V ∈U has the finite intersection property and apply
Theorem 19. Thus, suppose V1, V2, . . . , Vn ∈ U . Then,

⋂n
i=1 Vi ∈ U so

h⋂n
i=1 Vi

∈
n⋂

i=1

C(Vi).

Thus the sets C(V ) satisfy the finite intersection property, so, because the sets
C(V ) are closed and X is compact, Theorem 19 says that we can find some

h ∈
⋂
V ∈U

C(V ).

We will use h to construct an outer measure, which, restricted to Borel sets, will
be our desired Haar measure. First, we need to prove a few useful properties of h.

Lemma 48. Let K,K1,K2 ⊂ G be compact, and let g ∈ G. Then,

(1) h(gK) = h(K).
(2) If K1 ⊂ K2, h(K1) ⊂ h(K2).
(3) h(K1 ∪K2) ≤ h(K1) + h(K2).
(4) If K1 ∩K2 = ∅, then h(K1 ∪K2) = h(K1) + h(K2).
(5) h(K0) = 1.

Proof.

(1) Define a function f : X → R by f = πgK − πK , where πK : X → [0, (K :
K0)] denotes the projection map. Then, f is continuous by Theorem 7 be-
cause it is the composition of g : X → R2 defined by g(x) = (πgK(x), πK(x))
(which is continuous by Theorem 22) and the continuous function R2 → R
sending (x, y) → x − y. Further, because hU (gK) = hU (K) for all U ∈ U
by Lemma 47, we have f(x) = 0 for all x ∈ {hU | U ∈ U}. In particular,
for each V ∈ U , f is zero on the set

{hU | U ∈ U , U ⊂ V }.
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Since C(V ) is the closure of this set, continuity of f implies that f is zero
on all of the sets C(V ). Finally, since h is in the intersection of the sets
C(V ), it follows that h(gK)− h(K) = f(h) = 0, giving h(gK) = h(K).

(2) Define a function f : X → R by f = πK2
−πK1

. Then, f is continuous by an
argument similar to the one in part (1). Further, because hU (K1) ≤ hU (K2)
for all U ∈ U , f is nonnegative on each set

{hU | U ∈ U , U ⊂ V }.

Since C(V ) is the closure of this set, continuity of f implies that f is
nonnegative on all of the sets C(V ). Finally, since h is in the intersection
of the sets C(V ), it follows that h(K1)−h(K2) = f(h) ≥ 0, giving h(K1) ≤
h(K2).

(3) Define a function f : X → R by f = πK1
+ πK2

− πK1∪K2
. It follows

that f is continuous by an argument analogous to that of the previous
parts. Further, by Lemma 47, for all V ∈ U , f is nonnegative on the set
{hU | U ∈ U , U ⊂ V }, and hence f is nonnegative on C(V ) by continuity.
Thus, f(h) ≥ 0 which is the same as saying h(K1 ∪K2) ≤ h(K1) + h(K2).

(4) Suppose that K1 ∩ K2 = ∅. By Theorem 16, we can find disjoint open
sets U1 ⊃ K1 and U2 ⊃ K2. Now, by Theorem 37, we can choose V1 ∈ U
such that K1V1 ⊂ U1, and V2 ∈ U such that K2V2 ⊂ U2. Let V = V1 ∩ V2,
which is an open set containing the identity, so V ∈ U . Further, we have
both K1V ⊂ U1 and K2V ⊂ U2, which means K1V ∩ K2V = ∅. If
U ∈ U is any subset of V −1, we clearly have K1U

−1 ∩ K2U
−1 = ∅, so

hU (K1 ∪ K2) = hU (K1) + hU (K2) by Lemma 47. Like before, we define
a continuous function f : X → R by f = πK1

+ πK2
− πK1∪K2

. Noting
that V −1 is open because the map x → x−1 is continuous (and thus a
homeomorphism), we have shown that f is identically 0 on the set {hU |
U ∈ U , U ⊂ V −1}. Continuity of f implies that f is identically 0 on the
closure of this set, which is C(V −1). By definition, we have h ∈ C(V −1),
so h(K1 ∪K2) = h(K1) + h(K2).

(5) Clearly hU (K0) = 1 for all U ∈ U . Let f = πK0
: X → [0, 1] denote the

projection map. Then f is continuous and 1 on the set {hU | U ∈ U}.
It follows that for all V ∈ U , f(x) = 1 for all x ∈ C(V ). Thus h(K0) =
f(h) = 1.

□

We will now use h to define a function µ∗ on all subsets of G, which will be an
outer measure. First, for an open set U ⊂ G we define

µ∗(U) = sup{h(K) | K ⊂ U,K compact},

if U is nonempty and µ∗(∅) = 0. We note that for nonempty open sets U , the
set {h(K) | K ⊂ U,K compact} is nonempty because singleton sets are always
compact in a locally compact Hausdorff space.

Now, note that µ∗ is monotonic on open sets, meaning if U1 ⊂ U2, then µ∗(U1) ≤
µ∗(U2). Indeed, this follows from the fact that if U1 ⊂ U2 then {h(K) | K ⊂
U1,K compact} ⊂ {h(K) | K ⊂ U2,K compact}.

Now, if A is an arbitrary subset of G, we define

µ∗(A) = inf{µ∗(U) | A ⊂ U,U open}.
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If U is open we have actually defined µ∗(U) in two different ways, however it is easy
to see that these definitions agree using the fact that µ∗ is monotonic on open sets.
Also, note that µ∗(A1) ≤ µ∗(A2) if A1 ⊂ A2 trivially holds for all A1, A2 ⊂ G. We
now show µ∗ is an outer measure.

Lemma 49. µ∗ is an outer measure, meaning µ∗ : P(G) → [0,∞], where P(G) =
{X | X ⊂ G}, and

(1) µ∗(∅) = 0,
(2) If A1 ⊂ A2 then µ(A1) ≤ µ(A2)
(3) For any subsets A1, A2, . . . , of G,

µ∗

( ∞⋃
i=1

Ai

)
≤

∞∑
i=1

µ(Ai).

Proof. We first need to check that µ∗ is nonnegative. Clearly h ≥ 0 because h ∈ X.
It then follows trivially from the definition of µ∗ that µ∗ is nonnegative. Thus, µ∗

is a function P(G) → [0,∞]. (1) holds because h ∈ X and by the definition of X
this means h(∅) ∈ [0, (∅ : K0)] = {0}. We have already seen that (2) holds, so it
only remains to show (3).

We first prove this for open sets. Let U1, U2, . . . , be a countable collection of
open subsets of G. Let K be any compact subset of the open set

⋃∞
i=1 Ui. By

compactness, we can find an integer n > 0 such that

K ⊂
n⋃

i=1

Ui.

Now, applying Lemma 26 inductively, we can find compact sets Ki ⊂ Ui such that
K =

⋃n
i=1 Ki. Applying the definition of µ∗ on open sets and part (3) of Lemma

48 inductively, we get

h(K) = h

(
n⋃

i=1

Ki

)
≤

n∑
i=1

h(Ki) ≤
n∑

i=1

µ∗(Ui) ≤
∞∑
i=1

µ∗(Ui).

Since this holds for all compact K ⊂
⋃∞

i=1 Ui and

µ∗

( ∞⋃
i=1

Ui

)
= sup{µ(K) | K ⊂

∞⋃
i=1

Ui,K compact}

by definition, we conclude

µ∗

( ∞⋃
i=1

Ui

)
≤

∞∑
i=1

µ∗(Ui).

Now let A1, A2, . . . be any subsets of G and let ϵ > 0 be given. By definition of µ∗,
for each i = 1, 2, . . . we can find an open set Ui ⊃ Ai such that µ∗(Ui) ≤ µ∗(Ai)+

ϵ
2i .

Then,
⋃∞

i=1 Ai ⊂
⋃∞

i=1 Ui so monotonicity of µ∗ gives

µ∗

( ∞⋃
i=1

Ai

)
≤ µ∗

( ∞⋃
i=1

Ui

)
≤

∞∑
i=1

µ∗(Ui) ≤
∞∑
i=1

(
µ∗(Ai) +

ϵ

2i

)
=

( ∞∑
i=1

µ∗(Ai)

)
+ϵ.

Since this holds for all ϵ > 0, we have

µ∗

( ∞⋃
i=1

Ai

)
≤

∞∑
i=1

µ∗(Ai),
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as desired. □

It now follows that µ∗ restricts to a measure on the σ-algebra of µ∗-measurable
sets, where a set B is defined to be µ∗ measurable if and only if for all A ⊂ G,

µ∗(A) = µ∗(A ∩B) + µ∗(A ∩Bc).

We now show that every open set U is µ∗ measurable. By the previous lemma, we
have µ∗(A) ≤ µ∗(A ∩ U) + µ∗(A ∩ U c) for all A ⊂ G, so we only need to show the
reverse inequality. If µ∗(A) = ∞, A ∩ U = ∅, or A ∩ U c = ∅ then this is obvious,
so suppose not. Then, by definition of µ∗ we can find an open set V ⊃ A such that
µ∗(V ) ≤ µ∗(A) + ϵ/3. Next, since V ∩ U is open, the definition of µ∗ implies we
can find a compact set K such that h(K) ≥ µ∗(V ∩ U)− ϵ/3. Then since V ∩Kc

is open we can find a compact set L such that h(L) ≥ µ∗(V ∩Kc) − ϵ/3. Noting
that V ∩ U c ⊂ V ∩Kc, we have

h(L) ≥ µ∗(V ∩Kc)− ϵ/3 ≥ µ∗(V ∩ U c)− ϵ/3.

Since K and L are disjoint, A ⊂ V , and K ∪ L is a compact subset of V , we have

µ∗(A) ≥ µ∗(V )− ϵ/3

≥ h(K ∪ L)− ϵ/3

= h(K) + h(L)− ϵ/3

≥ (µ∗(V ∩ U)− ϵ/3) + (µ∗(V ∩ U c)− ϵ/3)− ϵ/3

= µ∗(V ∩ U) + µ∗(V ∩ U c)− ϵ

≥ µ∗(A ∩ U) + µ∗(A ∩ U c)− ϵ.

Since ϵ > 0 was arbitrary, this implies

µ∗(A) ≥ µ∗(A ∩ U) + µ∗(A ∩ U c),

so U is µ∗ measurable. Since the µ∗ measurable sets form a σ-algebra and the Borel
σ-algebra is defined to be the smallest σ-algebra containing all open sets, it follows
that every Borel set is µ∗ measurable.

Finally, we let µ denote the restriction of µ∗ to the Borel sets. We claim that µ is
our desired Haar measure. Since every Borel set is µ∗ measurable, µ is a measure.
By definition we have

µ(E) = inf{µ(U) | E ⊂ U,U open}
for all Borel sets E, so µ is outer regular.

Next we will prove inner regularity. First, we note that if K is compact then for
all open sets U ⊃ K, h(K) ≤ µ(U), by definition of µ. Thus,

µ(K) = inf{µ(U) | U ⊃ K,U open} ≥ h(K).

Now, if U is any open set it follows that

µ(U) = sup{h(K) | K ⊂ U, compact} ≤ sup{µ(K) | K ⊂ U, compact}.
However, monotonicity of µ implies sup{µ(K) | K ⊂ U, compact} ≤ µ(U), so

µ(U) = sup{µ(K) | K ⊂ U,K compact},
so µ is inner regular.

Also, the condition µ(K) ≥ h(K) for compact K implies µ is not identically 0
because

µ(K0) ≥ h(K0) = 1.



THE HAAR MEASURE ON A LOCALLY COMPACT GROUP 15

We now need to show µ is finite on compact sets, so let K ⊂ G be any compact
set. Since G is locally compact and Hausdorff, for each x ∈ K we can choose
some open neighborhood Vx of x such that Vx is compact. The collection {Vx}x∈K

is then an open cover of K, so by compactness there exist finitely many points
x1, x2, . . . , xn ∈ K which satisfy K ⊂

⋃n
i=1 Vxi

. Let V =
⋃n

i=1 Vxi
. Then, V is an

open set and V is compact because V =
⋃n

i=1 Vxi
is the finite union of compact

sets. Now, for any compact subset L of V , we have L ⊂ V , so h(L) ≤ h(V ) by the
monotonicity of h (part (2) of Lemma 48). Thus, h(V ) is an upper bound on the
set {µ(L) | L ⊂ V,L compact}, so

h(V ) ≥ sup{h(L) | L ⊂ V,L compact} = µ(V ).

Finally, monotonicity of µ gives

µ(K) ≤ µ(V ) ≤ h(V ).

This implies µ(K) is finite because h is always finite (since h ∈ X).
Lastly, since h is left-translation-invariant, we have

µ(U) = sup{h(K) | K ⊂ U,K compact}
= sup{h(gK) | K ⊂ U,K compact}
= sup{h(K) | K ⊂ gU,K compact}
= µ(gU),

for all open sets U and g ∈ G. Thus, for all Borel sets E,

µ(E) = inf{µ(U) | E ⊂ U,U open}
= inf{µ(gU) | E ⊂ U,U open}
= inf{µ(U) | gE ⊂ U,U open}
= µ(gE).

This shows that µ is left-translation-invariant, so it follows that µ is a left Haar
measure. □

We will now show that the Haar measure on a locally compact group is essentially
unique. To prove this, we will show that if µ and ν are Haar measures, then
the corresponding integrals

∫
G
f dµ and

∫
G
f dν are equal up to a constant, for

f ∈ Cc(G). We will then apply the Riesz Representation Theorem (Theorem 42).
However, to work with these integrals we will need a version of Fubini’s Theorem
for measure spaces. To prove this theorem, the following lemma will be helpful.

Lemma 50. Let S and T be topological spaces with T compact, and let f : S×T →
C be a continuous function. Then, for each ϵ > 0 and each s0 ∈ S, there exists an
open neighborhood U of s0 such that |f(s, t)− f(s0, t)| < ϵ for all s ∈ U and t ∈ T .

Proof. By continuity of f , for each t ∈ T we can choose open neighborhoods Ut of
s0 and Vt of t such that for all (s, t′) ∈ Ut × Vt, |f(s, t′) − f(s0, t)| < ϵ/2. It then
follows that for all (s, t′) ∈ Ut × Vt, we have

|f(s, t′)− f(s0, t
′)| ≤ |f(s, t′)− f(s0, t)|+ |f(s0, t)− f(s0, t

′)| < ϵ

2
+

ϵ

2
= ϵ.

Now, the sets Vt for t ∈ T form an open cover of T , so by compactness of t, we
can find finitely many points t1, . . . , tn ∈ T such that T ⊂

⋃n
i=1 Vti . We then

define U =
⋂n

i=1 Uti , which we claim satisfies the desired property. Indeed, U is
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an open neighborhood of s0, and for all (s, t) ∈ U × T , t ∈ Vti for some i. Thus,
(s, t) ∈ Uti × Vti so applying the inequality above gives

|f(s, t)− f(s0, t)| < ϵ.

□

For convenience in the following theorem, we make the following definition.

Definition 51. Let X and Y be sets and let f be a function on X × Y . For each
x ∈ X and y ∈ Y , the sections fx and fy are defined to be the functions on Y and
X, respectively, given by fx(y) = f(x, y) and fy(x) = f(x, y).

Theorem 52. Let X and Y be locally compact Hausdorff topological spaces, let µ
and ν be regular Borel measures on X and Y , respectively, and let f ∈ Cc(X × Y ).

(1) For each x ∈ X and y ∈ Y , fx ∈ Cc(Y ) and fy ∈ Cc(X).
(2) Let ϕX : X → C be the function

ϕX(x) =

∫
Y

fx(y) dν(y)

and let ϕY : Y → C be defined by

ϕY (y) =

∫
X

fy(x) dµ(x).

Then ϕX ∈ Cc(X) and ϕY ∈ Cc(Y ).
(3) The equality∫

X

∫
Y

f(x, y) dν(y)dµ(x) =

∫
Y

∫
X

f(x, y) dµ(x)dν(y)

holds.

Proof.

(1) Let K ⊂ C denote the support of f , and let KX and KY denote the image
of K under the projection maps πX : X × Y → X and πY : X × Y → Y ,
respectively. Then KX and KY are compact since they are the continuous
image of the compact set K. To prove the section fx is continuous, we
note that it is the composition of the map y → (x, y), which is continuous
by Theorem 22, and f , which is continuous by assumption. Next, we note
that if fx(y) = 0 then (x, y) ∈ K, so y ∈ KY . Thus supp(fx) ⊂ KY .
Since supp(fx) is closed by definition, it is compact as a closed subset of a
compact set. It follows that fx ∈ Cc(Y ). Similarly, we have fy ∈ Cc(X).

(2) By part (1), fx ∈ Cc(Y ) and fy ∈ Cc(X) so fx is ν-integrable and fy is
µ-integrable and thus the functions ϕX and ϕY are well defined everywhere.
To prove continuity of ϕX , let x0 ∈ X and ϵ > 0 be arbitrary. Then, by
Lemma 50 applied to the function f and the setX×KY , we can find an open
neighborhood U of x0 such that |fx(y) − fx0

(y)| = |f(x, y) − f(x0, y)| < ϵ
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for all x ∈ U and y ∈ KY . Then,

|ϕX(x)− ϕX(x0)| =
∣∣∣∣∫

Y

fx(y) dν(y)−
∫
Y

fx0(y) dν(y)

∣∣∣∣
=

∣∣∣∣∫
KY

(fx(y)− fX0
(y)) dν(y)

∣∣∣∣
≤
∫
KY

|fx(y)− fx0(y)| dν(y)

≤ ϵν(KY ),

where we used the fact that for all y outside of Ky, fx(y) = fx0(y) = 0.
Since ϵ > 0 was arbitrary, this implies ϕX is continuous at x0. Since x0

was arbitrary, ϕX is continuous on X. Also, we note that if x ̸∈ KX

then fx(y) = 0 for all y and thus ϕX(x) =
∫
Y
0 dν = 0. It follows that

supp(ϕX) ⊂ KX and thus supp(ϕX) is compact as a closed subset of a
compact set. Putting everything together gives ϕX ∈ Cc(X). By the exact
same argument, ϕY ∈ Cc(Y ).

(3) Part (2) shows that ϕX and ϕY are µ-integrable and ν-integrable, respec-
tively. We need to show that their integrals are equal. Let ϵ > 0 be given.
For each x ∈ X, we apply Lemma 50 to get an open neighborhood Ux

of x such that |f(x′, y) − f(x, y)| < ϵ for all x′ ∈ U and y ∈ KY . By
compactness of KX , we can find finitely many points x1, . . . , xn such that
the sets Ux1

, . . . , Uxn
cover KX . We now define sets Ai for i = 1, . . . , n by

A1 = KX ∩ Ux1
and

Ai = KX ∩ Uxi ∩ (Uxi−1)
c ∩ · · · ∩ (Ux1)

c

for i = 2, . . . , n. The sets Ai are then disjoint Borel sets such that Ai ⊂ Uxi

for all i and KX =
⋃n

i=1 Ai. Now define a function g : X × Y → C by

g(x, y) =

n∑
i=1

χAi
(x)f(xi, y).

We note that∫
X

∫
Y

g(x, y) dν(y)dµ(x) =

∫
X

n∑
i=1

χAi
(x)

(∫
Y

f(xi, y)dν(y)

)
dµ(x)

=

(∫
Y

f(xi, y) dν(y)

)(∫
X

n∑
i=1

χAi(x)dµ(x)

)

=

∫
Y

f(xi, y)

(∫
X

n∑
i=1

χAi(x)dµ(x)

)
dν(y)

=

∫
Y

∫
X

g(x, y) dµ(x)dν(y).

Next, note that f and g vanish outside of KX ×KY . Also, for all (x, y) ∈
KX × KY we have x ∈ Ai for some i and thus and |f(x, y) − g(x, y)| =
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|f(x, y)− f(xi, y)| < ϵ since x ∈ Uxi
. Thus, we have∣∣∣∣∫

X

∫
Y

f(x, y) dν(y)dµ(x) −
∫
X

∫
Y

g(x, y) dν(y)dµ(x)

∣∣∣∣
=

∣∣∣∣∫
X

∫
Y

(f(x, y)− g(x, y)) dν(y)dµ(x)

∣∣∣∣
=

∣∣∣∣∫
KX

∫
KY

(f(x, y)− g(x, y)) dν(y)dµ(x)

∣∣∣∣
≤
∫
KX

∫
KY

|f(x, y)− g(x, y)| dν(y)dµ(x)

≤
∫
KX

∫
KY

ϵ dν(y)dµ(x)

= ϵµ(KX)ν(KY )

and similarly∣∣∣∣∫
Y

∫
X

f(x, y) dµ(x)dν(y)−
∫
Y

∫
X

g(x, y) dµ(x)dν(y)

∣∣∣∣ ≤ ϵµ(KX)ν(KY ).

However, we showed that these two integrals of g are equal to each other,
so the triangle inequality gives∣∣∣∣∫

X

∫
Y

f(x, y) dν(y)dµ(x)−
∫
Y

∫
X

f(x, y) dµ(x)dν(y)

∣∣∣∣ ≤ 2ϵµ(KX)ν(KY ).

Since ϵ was arbitrary, this gives∫
X

∫
Y

f(x, y) dν(y)dµ(x) =

∫
Y

∫
X

f(x, y) dµ(x)dν(y),

as desired.

□

We are finally ready to prove the uniqueness of the Haar measure.

Theorem 53. Let µ and ν be two Haar measures on a locally compact group G.
Then there exists a positive real number c such that µ(E) = cν(E) for all Borel sets
E.

Proof. First, since µ is nonzero, we can find some set of positive measure. By outer
regularity, it follows that we can find an open set with positive measure. Then by
inner regularity, we can find a compact set K of positive measure. Also, µ(K) is
finite by the regularity of µ.

Now let g ∈ Cc(G) be a nonnegative real function, not identically 0. We show
that

∫
G
g dµ > 0. Let U = g−1(R>0), which is open by continuity of g. Next, the

collection of translates {gU}g∈G forms an open cover of K, so we can find some
g1, . . . , gn such that K ⊂

⋃n
i=1 giU . We thus have

µ(K) ≤ µ

(
n⋃

i=1

giU

)
≤

n∑
i=1

µ(gU) = nµ(U)

by translation invariance of µ. Thus, µ(U) ≥ µ(K)/n > 0. Noting that U =⋃∞
i=1{x ∈ G | g(x) > 1

i }, it follows that we can find some i such that the set
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V = {x ∈ G | g(x) > 1
i } has positive measure. Then, we have∫
G

g dµ ≥
∫
V

g dµ ≥
∫
V

1

i
dµ =

µ(V )

i
> 0,

as desired.
Now, let f ∈ Cc(G) be arbitrary. We will show that the ratio

∫
G
f dµ/

∫
G
g dµ

does not depend on the Haar measure µ, so that we have
∫
G
f dµ/

∫
G
g dµ =∫

G
f dν/

∫
G
g dν. We start by defining a function h : G×G → C by

h(x, y) =
f(x)g(yx)∫
G
g(tx) dλ(t)

,

where λ is any left Haar measure on G, possibly equal to µ or ν. The denominator
of this is nonzero since, for all x ∈ G, g(tx) ∈ Cc(G) and g(tx) is nonnegative and
nonzero. We now show that h ∈ Cc(G × G). Let K = supp(f) and L = supp(g).
h(x, y) ̸= 0 implies f(x) ̸= 0 and g(yx) ̸= 0, meaning x ∈ K and y ∈ Lx−1 ⊂ LK−1.
We thus have supp(h) ⊂ K × LK−1. We show that LK−1 is compact as follows.
K−1 is compact because it is the image of the compact set K under the continuous
map x → x−1. Then, L×K−1 is compact by Theorem 24. The set LK−1 is then
compact as it is the image of L ×K−1 under the continuous map (x, y) → xy. It
follows by Theorem 24 that K × LK−1, and hence supp(h), is compact.

To show that h is continuous, we first note that since g is continuous, g(yx) : G×
G → R is continuous. Since f is continuous, the function f(x)g(yx) is continuous
as the product of two continuous complex-valued functions. We now show that the
map I(x) =

∫
G
g(tx) dλ(t) is continuous:

Lemma 54. Let λ be a regular Borel measure on a locally compact group G. Then,
the function I : G → C given by I(x) =

∫
G
g(tx) dλ(t) is continuous.

Proof. As before we let L denote the support of g. Let x0 ∈ G be arbitrary and
let ϵ > 0 be given. By local compactness, we can find an open neighborhood W

of x0 with compact closure. It follows that the set LW
−1

is compact in the same

way we showed that LK−1 is compact, so λ
(
LW

−1
)
is finite. Thus we can choose

some ϵ′ > 0 such that ϵ′λ
(
LW

−1
)
< ϵ. Now, for each point x ∈ L, continuity of g

implies we can choose some open neighborhood Ux of the identity such that

|g(x)− g(y)| < ϵ′

2

for all y ∈ xUx. Then, by Theorem 36, we can find an open set Vx containing the
identity such that VxVx ⊂ Ux. By compactness of L, there are finitely many points
x1, . . . , xn such that L ⊂

⋃n
i=1 xiVxi

. Define V =
⋂n

i=1 Vx and U = V ∩V −1, which
is an open neighborhood of the identity. We claim that for all x, y ∈ G such that
y ∈ xU ,

|g(x)− g(y)| < ϵ′.

Indeed, if x and y are both not in L, then clearly |g(x)− g(y)| = 0 < ϵ′. Thus we
may assume either x ∈ L or y ∈ L. First consider the case x ∈ L. Then, x ∈ xiVxi

for some i. Since xiVxi
⊂ xiUxi

, x ∈ xiUxi
. Also, we have y ∈ xUx ⊂ xVxi

⊂
xiVxiVxi ⊂ xiUxi . Thus, by definition of Uxi , we have

|g(x)− g(y)| ≤ |g(x)− g(xi)|+ |g(xi)− g(y)| < ϵ′

2
+

ϵ′

2
= ϵ′.
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Now consider the case y ∈ L. By assumption, x ∈ yU so there exists some u ∈ U
such that x = yu. Rearranging, we get y = xu−1. However, since U = V ∩ V −1,
u−1 ∈ U and thus y ∈ xU . It then follows by the previous case with x and y
swapped that |g(x)− g(y)| < ϵ′.

It now follows that for all x ∈ W ∩ x0U , we have tx ∈ tx0U , implying |g(tx) −
g(tx0)| < ϵ′. Thus, for all x ∈ W ∩ x0U ,

|I(x)− I(x0)| =
∣∣∣∣∫

G

(g(tx)− g(tx0)) dλ(t)

∣∣∣∣
≤
∫
G

|g(tx)− g(tx0)| dλ(t)

=

∫
LW

−1
|g(tx)− g(tx0)| dλ(t)

≤
∫
LW

−1
ϵ′ dλ(t)

= ϵ′λ
(
LW

−1
)

< ϵ,

where we used the fact that g(tx) = g(tx0) = 0 if t ̸∈ LW
−1

. Since W ∩ x0U is an
open neighborhood of x0 and ϵ was arbitrary, it follows that I is continuous. □

Thus, h is continuous since it is a quotient of continuous complex-valued func-
tions with nonzero denominator. We thus have h ∈ Cc(G × G), so we can apply
Theorem 52. Because µ and λ are Haar measures, we can also use Theorem 38.
Thus, we have∫

G

∫
G

h(x, y) dλ(y)dµ(x) =

∫
G

∫
G

h(x, y) dµ(x)dλ(y)

=

∫
G

∫
G

h(y−1x, y) dµ(x)dλ(y)

=

∫
G

∫
G

h(y−1x, y) dλ(y)dµ(x)

=

∫
G

∫
G

h(y−1, xy) dλ(y)dµ(x),

where we used Theorem 52 to swap the order of integration, then we used Theorem
38 to replace x with y−1x, used Theorem 52 swap the order of integration again,
and finally used used Theorem 38 again to replace y with xy. We now use the
definition of h to compute these integrals. First, for all x ∈ G,∫

G

h(x, y) dλ(y) =

∫
G

f(x)g(yx)∫
G
g(tx) dλ(t)

dλ(y) = f(x)

∫
G
g(yx) dλ(y)∫

G
g(tx) dλ(t)

= f(x),

so ∫
G

∫
G

h(x, y) dλ(y)dµ(x) =

∫
G

f dµ.

From the definition of h, we get

h(y−1, xy) =
f(y−1)g(x)∫

G
g(ty−1) dλ(t)

.
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Then, for all x ∈ G,∫
G

h(y−1, xy) dλ(y) =

∫
G

f(y−1)g(x)∫
G
g(ty−1) dλ(t)

dλ(y) = g(x)

∫
G

f(y−1)∫
G
g(ty−1) dλ(t)

dλ(y),

so ∫
G

∫
G

h(y−1, xy) dλ(y)dµ(x) =

∫
G

f(y−1)∫
G
g(ty−1) dλ(t)

dλ(y)

∫
G

g dµ.

Thus, we have ∫
G

f dµ =

∫
G

∫
G

h(x, y) dλ(y)dµ(x)

=

∫
G

∫
G

h(y−1, xy) dλ(y)dµ(x)

=

∫
G

f(y−1)∫
G
g(ty−1) dλ(t)

dλ(y)

∫
G

g dµ,

which rearranges to ∫
G
f dµ∫

G
g dµ

=

∫
G

f(y−1)∫
G
g(ty−1) dλ(t)

dλ(y)

because
∫
G
g dµ > 0. By symmetry, the same result must hold for the measure ν,

so ∫
G
f dν∫

G
g dν

=

∫
G

f(y−1)∫
G
g(ty−1) dλ(t)

dλ(y),

giving ∫
G
f dµ∫

G
g dµ

=

∫
G
f dν∫

G
g dν

.

Letting c =
∫
G

g dµ∫
G

g dν
, we get ∫

G

f dµ = c

∫
G

f dν

for all f ∈ Cc(G). Now define a new measure ν′ by ν′(E) = cν(E) for all Borel sets
E. Clearly, we must have ∫

G

f dµ =

∫
G

f dν′

for all f ∈ Cc(G). We can now define a positive linear functional Λ on Cc(G) by

Λ(f) =

∫
G

f dµ =

∫
G

f dν′.

However, by Theorem 42, there exists a unique regular Borel measure µ such that

Λ(f) =

∫
G

f dµ

for all f ∈ Cc(G). Since ν′ is also a regular Borel measure satisfying this, it follows
that we must have µ = ν′, so

µ(E) = cν(E)

for all Borel sets E. □

This concludes the proof of the existence and uniqueness of a left Haar measure
on any locally compact group G.
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Remark 55. To prove uniqueness of the left Haar measure, we used the Riesz
Representation Theorem (Theorem 42), whose proof was omitted because it is long
and unrelated to the main content of this paper. However, we only needed to use
the uniqueness part of this theorem, which can be proven easily using Theorem 43:

Theorem 56. Let X be a locally compact Hausdorff topological space, and let Λ be
a positive linear functional on Cc(X). Then there exists at most one regular Borel
measure µ such that

Λ(f) =

∫
X

f dµ

for all f ∈ Cc(X).

Proof. Suppose µ and ν are two regular Borel measures both satisfying this. Let
K be a compact set, which has finite µ-measure and ν-measure by regularity. Let
ϵ > 0 be given. Then, by outer regularity of ν, we can find some open set V ⊃ K
such that ν(V ) ≤ ν(K) + ϵ. By Theorem 43, we can find some f ∈ Cc(X) such
that χK(x) ≤ f(x) ≤ χV (x) for all x ∈ X. We then have

µ(K) =

∫
X

χK dµ ≤
∫
X

f dµ = Λ(f) =

∫
X

f dν ≤
∫
X

χV f dν = ν(V ) ≤ ν(K) + ϵ.

Since ϵ > 0 was arbitrary, this gives µ(K) ≤ ν(K). The reverse inequality follows
by symmetry, so µ(K) = ν(K) for all compact sets K. Regularity then implies that
for any open set U ,

µ(U) = sup{µ(K) | K ⊂ U,K compact} = sup{ν(K) | K ⊂ U,K compact} = ν(U)

and thus for any Borel set E,

µ(E) = inf{µ(E) | E ⊂ U,U open} = inf{ν(E) | E ⊂ U,U open} = ν(E).

□

6. Examples

In this last section, we give a couple simple examples and applications of the
Haar measure.

Example 57. Let S1 = {z ∈ C | |z| = 1} be the circle as a subset of the complex
plane. Then S1 is a group under multiplication and inherits a locally compact,
Hausdorff topology as a subset of C. Thus, there is a unique Haar measure µ on
S1. For each point z = eiθ ∈ S1, translation by z is simply rotation by the angle θ.
The condition of translation invariance,

µ(eiθE) = µ(E),

then simply says that µ is invariant under rotations.
We remark how this relates to the motivation behind the Haar measure. As said

in the introduction, the idea behind the Haar measure is that the group structure of
a locally compact group gives a group of symmetries–the translations–and the Haar
measure is the unique measure for which these symmetries are measure-preserving.
Invariance under these symmetries can be interpreted as the Haar measure being
uniform. In the case of S1, the symmetries derived from the group structure are
simply the rotations. A uniform measure on S1 should certainly be invariant under
these. What we have shown in Section 5 is that this condition is actually enough
to define a unique measure on S1.
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To explicitly construct a Haar measure on S1, we can define f : [0, 2π) → S1 by
f(θ) = eiθ and then let

µ(E) =
1

2π
λ(f−1(E)),

where λ is the Lebesgue measure on R. The factor 1
2π ensures that µ(S1) = 1,

so that µ is a probability measure. In fact, on any compact group G, any Haar
measure is finite and thus, by scaling, there exists a unique Haar measure on G
which is also a probability measure.

Example 58. Let GLn(R) denote the group of invertible n × n matrices of real

numbers. Identifying GLn(R) with a subset of Rn2

, we can endow GLn(R) with
the subspace topology. GLn(R) is then a locally compact group, so it has a unique
Haar measure. One way to write this measure is

µ(S) =

∫
S

1

|det(X)|n
dX,

where dX denotes the Lebesgue measure on the subset of Rn2

identified with
GLn(R). The translation invariance of this measure follows from the change of
variables formula for integration. For each M ∈ GLn(R), we let TM : GLn(R) →
GLn(R) denote the translation map. Considering TM as a linear map on Rn2

, we
see that det(TM ) = det(M)n. Thus, by the change of variables formula,

µ(MS) =

∫
MS

1

|det(X)|n
dX

=

∫
S

1

|det(MX)|n
· | det(T )| dX

=

∫
S

1

|det(M)|n|det(X)|n
· | det(M)|n dX

=

∫
S

1

|det(X)|n
dX

= µ(S).

We conclude with an application of the Haar measure to give a simple proof that
there is no countably infinite compact (Hausdorff) group:

Theorem 59. There are no countably infinite compact groups.

Proof. For the sake of contradiction, suppose that G is a countably infinite compact
group. SinceG is compact, it is locally compact so it has a Haar measure µ. Further,
µ(G) < ∞ because G is compact. Also, because G is Hausdorff, the singleton set
{g} is closed for all g ∈ G, and thus {g} is Borel for all g ∈ G. Any two singleton
sets {g1} and {g2} are translates of each other, namely by g2g

−1
1 , so translation

invariance of µ implies µ({g1}) = µ({g2}). However, we have G =
⋃

g∈G{g} where
the union is countable, so

µ(G) =
∑
g∈G

µ({g}) =
∑
g∈G

µ({e}),

where e is the identity of G. If µ({e}) > 0 then this implies µ(G) = ∞ which is
impossible, so we must have µ({e}) = 0 and thus µ is zero for all singleton sets.
However, any set E ⊂ G can be written as a countable disjoint union of singleton
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sets, since G is countable, so µ(E) = 0 for all Borel sets E. This means that µ is
identically 0, which is a contradiction. □
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