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Abstract. Entropy is a concept with wide applications in all forms of sciences. In this article, we

will be exploring the subject in a mathematical context, with inclination towards ergodic theory and

measure theory. As a motivation, we first delve into various aspects of mathematical entropy and its
definitions in terms of information theory. Subsequently, attention is directed towards entropy in the

context of measure and probability spaces, we will also see how we can calculate the entropy measure
preserving transformations on those measure spaces. We will then establish some interesting results

and theorems such as the Kolmogorov-Sinai Theorem and Lochs’ Theorem.

. . . no one knows what entropy
really is, so in a debate you will
always have the advantage.

John von Neumann

1. Introduction

Entropy is arguably the most misunderstood yet the most elegant topic in all of science. There
are various versions of entropy, although they all follow the same theme. This implies that the core
idea behind entropy is extremely versatile and general, which will be our motivation throughout this
paper. There are many types of entropies, thermodynamic entropy, information theoretic entropy,
metric entropy, topological entropy, etc.

Mathematics and Science were developed in order to understand and to some limit, quantify the
workings of the universe. There were some things though, which were just not calculable; Some mea-
surements were hindered by our lack of detailed information about the events, which were termed
random or stochastic. Your true chances of winning the lottery or the angle at which a particle would
move when I heat it, are mathematically random variables. Some information in the universe, is
unattainable, due to varying factors, which gives rise to disorder, and uncertainty. The essence of
entropy lies in trying to quantify this uncertainty at a larger scale, so it averages out or normalizes.

In this article, we will be majorly focusing on measure-theoretic entropy and Kolgomorov-Sinai entropy
(KS entropy) which can be understood as generalizations of Information entropy (Shannon entropy).
So we will be defining a few common terms in Shannon entropy, which will serve as a conceptual base
and motivation for our main topic.

2. Information entropy

Information theoretic entropy was the first significant appearance of entropy in mathematics, Claude
Shannon introduced this in his 1948 paper ”A Mathematical Theory of Communication”. Information
entropy is vaguely defined as the average amount of ‘information’ or ‘surprise’ you get from the result
of a probabilistic event for all possibilities.
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Definition 2.1. If there is a random variable X, which takes values from χ, and is distributed by the
probability distribution p : χ → [0, 1], the Shannon entropy H[X] is defined as :-

H[X] := −
∑
x∈χ

p[X = x] log(p[X = x])

This formula might seem random for now, but let’s see why this formula works as a metric for our
definition. We need the average amount of information or surprise for all possibilities. So we know our
formula should look something like

H[X] =
1

|χ|
∑
x∈χ

(Information or Surprise if X = x)

Where |χ| is the number of possibilities in the distribution. So let’s try to define the information we
would obtain for each outcome x. Let’s call this I(x), the information or surprisal of x. We would
want some properties from I(x),

(1) when the probability of something is higher, we want the surprisal to be less, and vice versa.
(2) It would make sense to have I(x) = 0, when p[x] = 1, and I(x) to be undefined or ∞ when

p[x] = 0.

I(x) = log( 1
p[x] ) seems like the right choice for this as it satisfies all the properties we wanted. Now we

want to average this out for all x; We know that we would choose x, p[x]|χ| times. So plugging this in
we get :-

H[X] =
1

|χ|
∑
x∈χ

p[X = x]|χ| log
(

1

p[X = x]

)
=
∑
x∈χ

p[X = x]| log
(

1

p[X = x]

)
= −

∑
x∈χ

p[X = x] log(p[X = x])

Note that we use 0 log(0) = 0 as a convention, which makes sense as limx→0 x log(x) = 0.

H[X] can also be viewed as the expected value of the information by an event. It would be help-
ful to consider another type of entropy, namely conditional entropy. This is analogous to conditional
probability, where we are calculating the entropy of event X, assuming that Y has happened.

Definition 2.2. If (X,Y ) ∼ p[X,Y ], then the conditional entropy H[Y |X] is defined as

H[Y |X] :=
∑
x∈χ

p[X = x]H[Y |X = x]

=
∑
x∈χ

p[X = x]
∑
y∈χ

p[Y = y|X = x] log(p[Y = y|X = x])

=
∑
x∈χ

∑
y∈χ

p[(X,Y ) = (x, y)] log(p[Y = y|X = x])

Now that we are comfortable with the notion of mathematical entropy and information, we shall
move closer to our real topic.

3. Partitions and measure-theoretic entropy

Now we will be seeing what entropy means in the context of measure spaces. First, we will define
a partition.
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Definition 3.1. In a probability space (X,A, µ), a partition is a pairwise disjoint collection of sets
{Ai} such that ⋃

i

Ai = X

Definition 3.2. For a probability space (X,A, µ) and partition A , we define the measure-theoretic
(or metric) entropy H[A ] as

H[A ] := −
∑
A∈A

µ(A) logµ(A)

Definition 3.3. For a probability space (X,A, µ) and two partitions A and B, the Relative entropy
H[A |B] is defined as

H[A |B] := −
∑
B∈B

µ(B)
∑
A∈A

µ(A ∩B) log

(
µ(A ∩B)

µ(B)

)
We will now define an important operation which will be helpful when we will be talking about

transformations.

Definition 3.4. For any partitions A = {A1, A2, . . .} and B = {B1, B2, . . .} of a set X, the join of
these partitions is defined as

A ∨ B = {Ai ∩Bj}

This can also be extended to any n partitions A1,A1, . . . ,An such as the following,

n∨
i=0

Ai = A1 ∨ A2 . . . ∨ An

Following are some easy to observe properties of entropy, whose proof we will skip over. Their proof
can be found in almost all of the references.

Proposition 3.5. Let A ,B,C be partitions, then

(1) H[A ∨ B|C ] = H[A |C ] +H[B|A ∨ C ]
(2) If we have A ≤ B (‘≤’ here means that B is topologically finer than A )

H[A |C ] ≤ H[B|C ]

H[C |A ] ≤ H[C |B]

(3) H[A ∨ B|C ] ≤ H[A |C ] +H[B|C ]
(4) H[A |B] = 0 if and only if A ≤ B

Measure-theoretic entropy can be seen as a generalization to the standard information entropy, it
replaces probabilities of events with a more general measure. It’s important to realize that the entropy
here isn’t directly uncertainty related to some event which can end up certain ways. It might not be
trivial to understand what we mean by information of a partition. Suppose we need to locate a point
x ∈ X, and we are given a partition A = {A1, A2, . . .}. If we get to know that x ∈ Ai, is the information
that we are obtaining, significant or vague? We take the expected value of this information, which is
our entropy. This is the basic intuition behind this definition. Which means that the finer the partition,
the greater the entropy, and vice versa. Even though this notion of uncertainty may seem very abstract
and hard-to-digest for now, it will be justified when we see how transformations behave in this context.

It’s easy to see that joining two partitions makes the resulting partition finer, because we contain
only the intersection elements of both the partitions. Infact, it is the weakest(or coarsest) partition
which is finer than both A and B.
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A →
A1 A2 A3 A4

. . .

B →
B1 B2 B3 B4 B5

. . .

A ∨ B →
A1 ∩B1 A1 ∩B2 A2 ∩B3 A3 ∩B3 A4 ∩B4A4 ∩B5

. . .

So as the joined partition is finer, it contains more information. Which means it has more entropy.
In this context, we will be mostly joining only transformations of the same measurable subset. If we
apply some transformation T on a set A repetitively and keep joining the sets, it will eventually stop
refining the sets, we take the average of entropies at all these stages. This is what essentially the
entropy of a transformation is.

Definition 3.6. We define the KS entropy h[T,A ] of a measure preserving transformation T and
partition A as

h[T,A ] = lim
n→∞

1

n
H

[
n−1∨
i=0

T i(A )

]
We skip over the proof of the existence of this limit, which requires relatively elementary analysis.

Definition 3.7. We define the KS entropy h[T ] of a transformation T as

h[T ] = sup (h[T,A ]) over all partitions A

h[T,A ] can be seen as the average amount of information added to A by the transformation T ,
which makes perfect sense intuitively as that’s what we are trying to quantify. We are now going to
establish some basic propositions regarding these before proceeding to our theorems.

Proposition 3.8. (1) If A ≥ B, then h[T,A ] ≥ h[T,B]
(2) For any n ≥ 0, h[T,A ] = h[T,

∨n
i=0 T

−j(A )]
(3) h[T,A ] = limn→∞ h[T,

∨n
i=1 T

−j(A )]

4. Kolgomorov-Sinai theorem

Kolgomorov-Sinai theorem is one of the most important and fundamental results about the entropy
of measure-preserving transformations. It’s not always trivial or obvious to find the supremum of
h[T,A ] every time as it may contain a large amount of possibilities. Kolgomorov-Sinai theorem gives
us a solution to this problem and give us a partition, on which if we calculate the entropy of T , it will
be equal to h[T ] everytime.

Definition 4.1. In a invertible, measure-preserving system (X,A, µ, T ), a T -generator is a partition
A such that A is generated by

∨∞
i=−∞ T i(A ), i.e. -

∨∞
i=−∞ T i(A ) = A up to a measure 0 with respect

to µ.

Theorem 4.2 (Kolgomorv-Sinai). If A is a T -generator, then we have

h[T,A ] = h[T ]

In order to prove this, we would need a few other theorems and some more background.

Lemma 4.3. Let A be in the σ-algebra A = limn→∞
∨n

i=1 Ai. Then for all ε > 0, there exists an N ,
such that for all n ≥ N , there exists a union of atoms An (atoms are elements of the the partition) of
An, we have

µ(An∆A) ≤ ε
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Proof. We skip over the formal proof of this lemma, but this should be very intuitive, as A is infinitely
finer than any An. We are essentially approximating the element A, and as An+1 ≥ An for all n, there
must exist an N , which would be the threshold of fineness, after which we can approximate A using
An upto ε. □

Theorem 4.4. In partitions A1 ≤ A2 ≤ A3 ≤ . . . , a partition A would only be contained in the
σ-algebra

∨∞
i=1 Ai if and only if

lim
n→∞

H[A |An] = 0

Proof. Assume that A is contained in the σ-algebra ∨∞
i=1A. Given ε > 0, set an N such that if n ≥ N ,

and Ai is an atom of A , then there exists an A
(n)
i ∈ An such that µ(A

(n)
i ∆Ai) ≤ ε. Put

P
(n)
1 := A

(n)
1

P
(n)
j := A

(n)
j \

j−1⋃
i=1

Ai for all 1 ≤ j ≤ r − 1

P (n)
r := X \

r−1⋃
i=1

Ai

Then we have a partition P(n) = {P (n)
1 , P

(n)
2 , . . . , P

(n)
r }, which for all 1 ≤ i ≤ r − 1 satisfies,

µ(P
(n)
i ∆Ai) ≤ µ(A

(n)
i ∆Ai) + µ(P

(n)
i ∆A

(n)
i )

≤ ε+ µ(P
(n)
i ∆A

(n)
i ) = ε+ µ(P

(n)
i ∩

i−1⋃
j=0

A
(n)
j )

≤ ε+ µ(P
(n)
i ∩A

(n)
i ) = ε+

j−1∑
i=1

µ(P
(n)
i ∩ P

(n)
j )

≤ ε+

j−1∑
i=1

µ((P
(n)
i \ Pi) ∩ (P

(n)
j \ Pj))

≤ ε+ (i− 1)ε = iϵ

≤ rϵ

It’s intuitively clear that H[A |P(n)] ≤ ε because the log function inside the expression would converge
to 0 by our last result; and by Proposition 3.4

H[A |An] ≤ H[A |P(n)] ≤ ε

This is the proof from one side, we will skip the proof from the other side for now. A nice proof for
the converse can be found in [4]. □

Corollary 4.5. If A1 ≤ A1 ≤ . . . is a sequence of finite partitions such that P is the σ-algebra∨∞
i=1 Ai, then

h[T ] = sup
n

h[T,An]

Proof. Let A be a finite partition. By the theorem and hypothesis that
∨∞

i=1 Ai = P, we get

lim
n→∞

H[A ,An] = 0

Thus

h[T,A ]− h[T,An] ≤ h[A |An]

So again,

h[T,An] ≥ h[T,A ]− h[A |An]
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Hence we get,
sup
n

h[T,An] = sup
n

h[T,A ] = h[T ]

Hence proved. □

Now we finally have enough background to prove the Kolgomorov-Sinai Theorem. We will now give
a proof to the Kolgomorov-Sinai Theorem.

Proof of Theorem 4.2. By the theorem

h[T ] = sup
n

h

[
T,

n∨
i=−n

T−i(A )

]

= sup
n

h

[
T, Tn

(
2n∨
i=0

T−i(A )

)]

= sup
n

h

[
T,

2n∨
i=0

T−i(A )

]
= h[T,A ]

The last part is ensured by Proposition 3.8. □

Now that we are done with our first basic theorem of entropy, we can move on to further topics.
Now we will be seeing a very famous theorem in ergodic theory, called the Shannon-McMillan-Breiman
Theorem.

5. Shannon-McMillan-Breiman Theorem

Shannon-McMillan-Breiman Theorem is an important result in ergodic theory. This theorem gives
us a new viewpoint of the entropy of a transformation on some partition. It tells us the size of the nth

join of A with it’s transformations in terms of it’s entropy.

Theorem 5.1 (Shannon-McMillan-Breiman). Let (X,A, µ, T ) be a measure-preserving probability sys-
tem, where µ is ergodic under T , and A a partition with H[A ] < ∞. Let An =

∨n
i=0 T

i(A ) for all
n ≥ 1, and An(x) be the atom of An containing x. Then we have

− lim
n→∞

1

n
log(µ(An(x))) = h[T,A ]

As expected, we would be needing some more results and concepts to have enough background to
prove this. First we start with the concept of conditional expectation.

Definition 5.2. For a measure space (X,A, µ), and a function f ∈ L 1, f : X → R. The conditional
expectation Eµ(f |B) of a σ-algebra B where B ≤ C is defined as the unique function f ′ such that∫

B
f ′ dµ =

∫
B
f dµ

Note that conditional expectation, regardless of it’s name, is a function, and not a number.

Corollary 5.3. For any atom A, we have

f ′(x) =
1

µ(A)

∫
A

f dµ for all x ∈ A

The finer the σ-algebra B, the closer f ′ is to f . This is called the Martingale Convergence Theorem.

Theorem 5.4 (Martingale Convergence Theorem). Let {An}n≥1 be a sequence of σ-algebras, where
Ak+1 refines Ak. Let A = limn→∞ An :=

∨∞
i=1 Ai, then for any f ∈ L 1, we have

Eµ(f |An) → Eµ(f |A) as n → ∞

We skip over the proof. We will now take a look at the relative information function.
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Definition 5.5. Similar to relative entropy, we also define the relative information function IA |B as

IA |B(x) := −
∑
A∈A

∑
B∈B

1A∩B(x)
µ(A ∩B)

µ(A)

Note that this is defined, such that ∫
X

IA |B(x) dµ = H[A |B]

One can check using the previously given properties that

IA ∨B(x) = IA (x) + IB|A (x)

Corollary 5.6. For any two partitions A and B, we have

− logEµ(1A (x)|B) = IA |B(x)

Proof.

− logEµ(1A (x)|B) = − logEµ(
∑
A∈A

1A(x)|B)

= − log
∑
B∈B

1

µ(B)

∫
B

∑
A∈A

1A(x)

= − log
∑
A∈A

∑
B∈B

1A∩B
µ(A ∩B)

µ(B)

= IA |B(x)

□

Now we are ready to prove our theorem.

Proof of Theorem 5.1. Write gk(x) = IA (x) for k = 1 and gk(x) = IA |
∨k−1

i=1 T−i(A ) for k ≥ 2, so we

have

I∨n−1
i=0 T−i(A )(x) = I∨n−1

i=1 T−i(A )(x) + IA |
∨n−1

i=1 T−i(A )(x)

= I∨n−1
i=1 T−i(A )(x) + gn(x)

= I∨n−2
i=0 T−i(A )(T (x)) + gn(x)

= IA |
∨n−2

i=1 T−i(A )(x) + I∨n−2
i=1 T−i(A )(T (x)) + gn(x)

= I∨n−2
i=1 T−i(A )(T (x)) + gn−1(x) + gn(x)

= I∨n−3
i=0 T−i(A )(T

2(x)) + gn−1(x) + gn(x)

...

=

n−1∑
i=0

gn−i(T
i(x))

Now let g = limn→∞ gn, which exists and belongs to L 1 by the Martingale Convergence Theorem.
We can write the equality as

1

n
I∨n−1

i=0 T−i(A )(x) =
1

n

n−1∑
i=0

g(T i(x)) +
1

n

n−1∑
i=0

(gn−i − g)(T i(x))

Since µ is ergodic, we can apply Birkhoff’s Ergodic Theorem to get

1

n
I∨n−1

i=0 T−i(A )(x) =

∫
X

g dµ+
1

n

n−1∑
i=0

(gn−i − g)(T i(x))
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Now as we defined conditional information function, we have

1

n
I∨n−1

i=0 T−i(A )(x) = H

[
A |

∞∨
i=1

T−i(A )

]
+

1

n

n−1∑
i=0

(gn−i − g)(T i(x))

which is just

1

n
I∨n−1

i=0 T−i(A )(x) = h[T,A ] +
1

n

n−1∑
i=0

(gn−i − g)(T i(x))

For the second sum, we will define

Gn = sup
k≥N

|gk − g| and g∗ = sup
n

gn

We have that 0 ≤ Gn ≤ g∗ + g and g∗ + g ∈ L 1 because
∫
X
gn = H

[
A |
∨n−1

i=1 A
]
is a decreasing

function as n grows. Also, moreover, Gn → 0, so by the Dominated Convergence Theorem

lim
n→∞

∫
X

Gn dµ =

∫
X

lim
n→∞

Gn dµ → 0

now we can split the second sum into two parts

1

n

n−1∑
i=0

(gn−i − g)(T i(x)) =
1

n

n−N−1∑
i=0

(gn−i − g)(T i(x))) +
1

n

n−1∑
i=n−N

(gn−i − g)(T i(x))

≤ 1

n

n−N−1∑
i=0

GN (T i(x))) +
1

n

n−1∑
i=n−N

(gn−i − g)(T i(x))

The second one clearly tends to 0, and the first one tends to zero by dominated convergence theorem
when we take N → ∞. Hence we have our desired result. □

6. Lochs’ Theorem: An interesting application

Lochs’ Theorem is an interesting and a very strong result in the study of continued fractions. Lochs’
Theorem is an application of entropy and the Shannon-McMillan-Breiman Theorem. It gives us an
explicit relation between the number of decimal places which are expressed by using a certain part of
our continued fraction expansion. It is stated as,

Theorem 6.1. For R \ Z, if c(d) is the number of continued fraction terms needed to represent the
first d digits of the decimal expansion of a number, then for almost all numbers in R \ Z, we have

lim
d→∞

c(d)

d
=

6 log 2 log 10

π2

The proof of this theorem majorly relies on the Gauß map, which is G : x → 1
x (mod 1) and the

map T : x → 10x (mod 1).

Definition 6.2. Gauß map is the map G : x → 1
x (mod 1), this transformation is measure preserving

under the Gauß measure, which is

µ(A) =
1

log 2

∫
A

1

x+ 1
dx

We also define the density of this map, as

dµ(x)

dx
=

1

log 2

1

x+ 1
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Proof. We know that c(d) continued fraction terms represent, d decimal digits, this means that if Zc(x)
is the continued fractions cylinder, and Zd(x) is the decimal cylinder, then Zc(x) under the Gauß map
is contained under Zd(x) of the (Lebesgue measure preserving) T : x → 10x (mod 1) map, but not in
the Zd+1 cylinder. We have

log 2

10
λ(Zd(x)) ≤ µ(Zc(x)) ≤ 2 log 2λ(Zd(x))

By the Shannon-McMillan-Breiman Theorem, we have

hλ(T )

hµ(G)
= lim

d→∞

c(d)

− logµ(Zc(x))

− log λ(Zd(x))

d

= lim
d→∞

c(d)

d
lim
d→∞

log λ(Zd(x))

logµ(Zc(x))

Combining this with our first inequality, we get

hλ(T )

hµ(G)
≤ lim

d→∞

c(d)

d

d log 10

d log 10− log(2 log 2)

= lim
d→∞

c(d)

d

(
1 +

log(2 log 2)

d log 10− log(2 log 2)

)
by the same inequality, we get

hλ(T )

hµ(G)
≥ lim

d→∞

c(d)

d

(
1− log(log 2)

d log 10− 2 log 2

)
As these are sandwiching, we get the limit

hλ(T )

hµ(G)
= lim

d→∞

c(d)

d

The entropy hλ(T ) = log 10 because the map T is isomorphic to the
(

1
10 ,

1
10 , . . . ,

1
10

)
bernoulli shift.

The second entropy hµ(G) is trickier to compute, because it requires something called the Rokhlin
Formula, which says that for absolutely continous measures, we have

hµ(T ) =

∫
X

log |T ′| dµ

We already know the derivative (density) of the Gauß measure, which is 1
log 2

1
x+1 , plugging that in

hµ(T ) = − 2

log 2

∫ 1

0

log 1
x

x+ 1
dx

This integral is fairly easy to compute with elementary integration with parts, so are going to skip the
steps

hµ(T ) = − 2

log 2

−π2

12
=

π2

6 log 2
Plugging this in our equation completes our proof. □
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