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1 Introduction

Working with general continuous real-valued functions can be quite complicated, as we may
not necessarily know how those functions behave in certain regions. Applying them in ergodic
theory, then, becomes problematic. Polynomials, however, are rather predictable and easy
to calculate and manipulate. It would be desirable if we can reduce examining continuous
functions to examining those convenient polynomial functions - and we can in fact do so by
arbitrarily closely approximating functions by polynomials. More formally, the Weierstraß
Approximation Theorem states the following:

Theorem 1 (Weierstraß Approximation Theorem). Let f : [a, b] → R be a continuous
function. For any ϵ > 0, there exists a polynomial function p such that, for all x ∈ [a, b], we
have |f(x)− p(x)| < ϵ.

The Stone-Weierstraß Theorem is much more general than the above theorem, proving
that not only polynomials, but any set of functions that “separate points” can approximate
a real-valued function:

Definition 1. A set P separates points in X if, for any x, y ∈ X, there exists a function
p ∈ P such that p(x) ̸= p(y).

Theorem 2 (Stone-Weierstraß Theorem). Whenever X is a compact Hausdorff space and
P is a closed unital subalgebra of C(X,R), the set P is dense in C(X,R) if and only if P
separates points in X.

The statement “P is dense in C(X,R)” is equivalent to “functions in P approximate any
continuous function from X to R arbitrarily closely.”

In this paper, we will be proving both theorems. Specifically, we will be using the
classic constructive proof by Bernstein for the Weierstraß Approximation Theorem, and for
the general Stone-Weierstraß Theorem, we will use a proof using lattices, sets of functions
where, for any elements f, g in the lattice, minfg(x) = min(f(x), g(x)) and maxfg(x) =
max(f(x), g(x)) are also in the lattice.

Afterwards, we will be applying both theorems in order to not only determine whether
we can check unique ergodicity by just using polynomials or other dense sets of functions,
but also to introduce Fourier series and approximations of functions by trigonometric poly-
nomials.
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2 Weierstraß Approximation Theorem

We first prove the Weierstraß Approximation Theorem, which is the more intuitive and
straightforward of the two theorems. Notice that this theorem states that polynomials
converge uniformly to continuous functions, with the rate of convergence being the same for
all x ∈ [a, b]. Without loss of generality, we will assume that a = 0 and b = 1. Indeed, we
can always scale f(x) for x ∈ [a, b] down to a continuous function f((b− a)x+ a) over [0, 1],
and scale the approximating polynomial p(x) for x ∈ [0, 1] up to the polynomial p(x−a

b−a
).

Before we continue with the proof, which we adapt from Bernstein’s original paper [1], we
define the polynomials that approximate the continuous functions over [0, 1], the Bernstein
polynomials.

Definition 2. The nth Bernstein polynomial of a continuous function f (over [0, 1]) is
expressed as:

Bn(f, x) =
n∑

k=0

f

(
k

n

)(
n

k

)
xk(1− x)n−k.

Note that Bernstein used the notation En, not Bn, for his polynomials, as he used proba-
bilistic reasoning. In that context, the Bernstein polynomials represent an expected winnings
from a game where the prize for an event, of probability x, occurring exactly k times in n
attempts is f

(
k
n

)
. Indeed, it makes sense that the expected winnings would converge to f(x)

(representative of the expected price for an event occurring a fraction x of the time) when n
goes to ∞.

Proof of Theorem 1. We want to prove that limn→∞Bn(f, x) = f(x) uniformly for every
x ∈ [0, 1]. Since f is continuous, and, on the compact set [0, 1], uniformly continuous, for
any ϵ > 0, there exists a δϵ > 0 such that whenever |x− y| < δϵ, |f(x)− f(y)| < ϵ. Let ∥f∥∞
be the “supremum norm” of f , i.e. the supremum of |f(x)| for any x ∈ [0, 1] (or, in general,
any x in a set X). ∥f∥∞ is finite because f(x) must exist for all x ∈ [0, 1] and because [0, 1]
is compact. Select some constant c ∈ [0, 1]. Either |f(x) − f(c)| < ϵ

2
when |x − c| < δ ϵ

2
, or

|f(x) − f(c)| ≤ |f(x)| + |f(c)| ≤ 2∥f∥∞ ≤ 2∥f∥∞(x−c
δ ϵ
2

)2 + ϵ
2
when |x − c| ≥ δ ϵ

2
. Thus, the

inequality |f(x)− f(c)| ≤ 2∥f∥∞(x−c
δ ϵ
2

)2 + ϵ
2
holds true for all x ∈ [0, 1].

Notice that:

Bn(f − f(c), x) =
n∑

k=0

(f − f(c))

(
k

n

)(
n

k

)
xk(1− x)n−k

=
n∑

k=0

f

(
k

n

)(
n

k

)
xk(1− x)n−k −

n∑
k=0

f(c)

(
n

k

)
xk(1− x)n−k

= Bn(f, x)− f(c)

(
n∑

k=0

(
n

k

)
xk(1− x)n−k

)
= Bn(f, x)− f(c)(x+ 1− x)n = Bn(f, x)− f(c).
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We can now derive that:

|Bn(f, x)− f(c)| = |Bn(f − f(c), x)|

= |
n∑

k=0

(
f

(
k

n

)
− f(c)

)(
n

k

)
xk(1− x)n−k|

≤
n∑

k=0

2∥f∥∞

(
k
n
− c

δ ϵ
2

)2

+
ϵ

2

(n
k

)
xk(1− x)n−k

=
2∥f∥∞
δ2ϵ

2

n∑
k=0

(
k

n
− c

)2(
n

k

)
xk(1− x)n−k +

ϵ

2
(x+ 1− x)n

=
2∥f∥∞
δ2ϵ

2

n∑
k=0

(
k

n
− c

)2(
n

k

)
xk(1− x)n−k +

ϵ

2
.

We wish to evaluate
∑n

k=0(
k
n
− c)2

(
n
k

)
xk(1− x)n−k. We have:

n∑
k=0

(
k

n
− c

)2(
n

k

)
xk(1− x)n−k

=
n∑

k=0

(
k

n

)2(
n

k

)
xk(1− x)n−k −

n∑
k=0

2kc

n

(
n

k

)
xk(1− x)n−k +

n∑
k=0

c2
(
n

k

)
xk(1− x)n−k

=
n∑

k=0

k

n2

(
n

k

)
xk(1− x)n−k +

n∑
k=0

k(k − 1)

n2

(
n

k

)
xk(1− x)n−k − 2cx

n∑
k=1

(
n− 1

k − 1

)
xk−1(1− x)n−k + c2

=
x

n

n∑
k=1

(
n− 1

k − 1

)
xk−1(1− x)n−k +

(n− 1)x2

n

n∑
k=2

(
n− 2

k − 2

)
xk−2(1− x)n−k − 2cx+ c2

=
x

n
+

(n− 1)x2

n
− 2cx+ c2.

Thus:

|Bn(f, x)− f(c)| ≤ 2∥f∥∞
δ2ϵ

2

n∑
k=0

(
k

n
− c

)2(
n

k

)
xk(1− x)n−k +

ϵ

2

=
2∥f∥∞
δ2ϵ

2

(
x

n
+

(n− 1)x2

n
− 2cx+ c2

)
+

ϵ

2
.

For x = c, we have |Bn(f, c) − f(c)| ≤ 2∥f∥∞
δ2ϵ
2

( c
n
+ (n−1)c2

n
− 2c2 + c2) + ϵ

2
= 2∥f∥∞

δ2ϵ
2

( c−c2

n
) + ϵ

2
.

We know that the maximum for c− c2 = c(1− c) occurs at c = 1
2
and evaluates to 1

2
· 1
2
= 1

4
,

so:

|Bn(f, c)− f(c)| ≤ 2∥f∥∞
δ2ϵ

2

(
c− c2

n

)
+

ϵ

2
≤ ∥f∥∞

2nδ2ϵ
2

+
ϵ

2
.

For n > ∥f∥∞
ϵδ2ϵ

2

, ∥f∥∞
2nδ2ϵ

2

< ϵ
2
. So, for any ϵ, |Bn(f, c)− f(c)| < ϵ

2
+ ϵ

2
= ϵ for any sufficiently large

n. In other words, we indeed have limn→∞Bn(f, x) = f(x) and the proof of the Weierstraß
Approximation Theorem is complete.
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Example 1. We can approximate sin(πx) on [0, 1] by the respective Bernstein polynomials
Bn(f, x) =

∑n
k=0 sin

(
π k

n

) (
n
k

)
xk(1− x)n−k for various values of n (5, 20, 60, 170):

3 Definitions for the Stone-Weierstraß Theorem

Unlike the Weierstraß Approximation Theorem, the Stone-Wererstraß Theorem applies to
functions that do not necessarily have the reals as their domain. Thus, we must first define
some algebraic terms and structures.

Definition 3. A collection T of subsets of X is named a topology whenever

1. ∅ and X are in T ,

2. any union of elements of T is in T , and

3. any finite intersection of elements of T is in T .

We then call (X,T ) (or, shortly, X) a topological space and elements of T are called open,
while their complements are closed.

The topology on R that we usually use is simply the one constructed by taking the unions
or intersects of open intervals of R. However, for the conditions on X in the Stone-Weierstraß
Theorem, we must still define two more terms:

Definition 4. A topological space X is compact if, for any collection of open sets whose
union covers X (i.e. for any open cover of X), we can select finitely many of those open sets
that also cover X (i.e. there exists a finite subcover).
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In the reals, it suffices that X is closed and bounded, and therefore, closed intervals [a, b],
which are compact, are used in the Weierstraß Approximation Theorem.

There are useful special properties of compact sets. For instance, closed subsets A of a
compact set X are compact: Select any open cover of A. Include the open set X\A in the
cover, forming a cover of X. Since X is compact, there exists a finite subcover. If X\A is
not in the subcover, we have a finite subcover of the original open cover for A. If X\A is
included, we can just remove it from the subcover to get a finite subcover for A. Hence, A
is compact.

Definition 5. A topological space X is called Hausdorff if, for any distinct elements x, y of
X, there exist disjoint open sets Ux, Uy that include x,y, respectively.

We continue by defining continuity (forgive the pun) not only for functions from the reals
to reals, but from any topological space to another.

Definition 6. For a continuous function f from one topology to another, the preimage of
an open set f is also open. The set C(X,R) is defined as the set of all continuous functions
from X to R.

If f and g are continuous, so is f ◦ g: (f ◦ g)−1(U) = g−1(f−1(U)), where U is open, and
due to the continuity of f and g, f−1(U) and g−1(f−1(U)) are also open. In addition, for
f, g ∈ C(X,R), f + g and fg are continuous.

Furthermore, if A is compact and f is continuous, f(A) is compact. Form any open cover
of f(A). Since f is continuous, the preimages of each open set of the cover are open and
cover A. Since A is compact, there exists a finite subcover of these preimages for A. The
respective images are a finite subcover for f(A). So f(A) is compact.

Now we must explain what a “subalgebra P of C(x,R) is. The definition of a subalgebra
depends on the definition of an algebra.

Definition 7. An algebra is a set closed under addition, multiplication, and scalar mul-
tiplication, and we can also include a multiplicative identity to form a unital algebra. A
subalgebra is simply a subset of the algebra that is also closed under the same operations,
and a unital subalgebra must also include the multiplicative identity.

We let the unital algebra on C(X,R) be normal addition and multiplication for functions,
with the multiplicative identity 1(x) = 1 - indeed, the function 1 is continuous, and, for
f, g ∈ C(X,R), we have f + g ∈ C(X,R) and fg ∈ C(X,R). Scalar multiplication derives
from letting g be a constant (and therefore continuous) function. The unital subalgebra P
must be closed under this addition and multiplication, and must include the function 1.

However, for the proof of the theorem itself, we need one final definition, the concept of
“lattices”:

Definition 8. A lattice L is a set of real-valued functions so that, for any f, g ∈ L,
minfg(x) = min(f(x), g(x)) and maxfg(x) = max(f(x), g(x)) are in L as well.
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Note that there are also general lattices that include any type of element that can be
ordered (i.e. we know which element is greater or smaller). However, this specific version
suffices for the Stone-Weierstraß Theorem, as we are indeed only considering real-valued
functions.

4 Proof of the Stone-Weierstraß Theorem

Having explained all definitions, we can continue with some preliminary lemmas. The closure
of P (denoted P ) is simply defined as the set P unioned with all limit points of P (i.e. limits
of elements of P ).

Lemma 1. When X is a compact Hausdorff space and P is a closed unital subalgebra of
C(X,R), P is a lattice.

Note that ∥p∥∞ < ∞ for p ∈ P : Because P is a closed subset of the compact C(X,R),
P is compact as well. Then, for the open cover (c − ϵ, c + ϵ) for every constant function c
(and a constant function ϵ), there exists a finite subcover (ci − ϵ, ci + ϵ), the union of which
includes all p for p ∈ P . So p (and |p|) must be bounded, and ∥p∥∞ is bounded too.

Proof of Lemma 1. We first prove that for any element p of P , |p| is also in P . We now use the
Weierstraß Approximation Theorem: We know that |y| is continuous for real y. So, for any
ϵ > 0 and y ∈ [−∥p∥∞, ∥p∥∞], there exists a polynomial function q′ such that ||y|−q′(y)| < ϵ

2
.

Let q(y) = q′(y) − q′(0) (i.e. the polynomial q′ with constant term 0). We know that
||0| − q′(0)| = |q′(0)| < ϵ

2
. Hence, ||y| − q(y)| = ||y| − q′(y) + q′(0)| ≤ ||y| − q′(y)|+ |q′(0)| <

ϵ
2
+ ϵ

2
= ϵ for any y ∈ [−∥p∥∞, ∥p∥∞]. This implies that ||p(x)| − q(p(x))| < ϵ for any x ∈ X,

as p(x) always lies between −∥p∥∞ and ∥p∥∞. Since q(p) = a1p + a2p
2 + a3p

3 + · · · for
real ai, and P is closed under addition and multiplication, q(p) is in P . Since |p| can be
approximated arbitrarily closely by functions in P (i.e. |p| is a limit point of P ), and P is
closed, |p| is in P .

Finally, for p1, p2 ∈ P , we know that maxp1p2(x) = p1+p2+|p1−p2|
2

and minp1p2(x) =
p1+p2−|p1−p2|

2
: When p1(x) ≥ p2(x), we determime that p1(x)+p2(x)+(p1(x)−p2(x))

2
= p1(x) and

p1(x)+p2(x)−(p1(x)−p2(x))
2

= p2(x), and when p1(x) < p2(x), we have p1(x)+p2(x)−(p1(x)−p2(x))
2

=

p2(x) and p1(x)+p2(x)+(p1(x)−p2(x))
2

= p1(x), as desired. Since P is closed under addition and

multiplication, and |p1 − p2| is in P , maxp1p2(x) and minp1p2(x) must be in P . Thus, P is a
lattice.

Lemma 2. If X is a compact Hausdorff space and P is a closed unital subalgebra of C(X,R)
that separates points in X, P strongly separates points X. In other words, for any x1, x2 ∈ X
and a1, a2 ∈ R, there exists a function p ∈ P such that p(x1) = a1 and p(x2) = a2.

Proof of Lemma 2. We use a constructive proof: We know that there exists some q ∈ P such
that q(x1) ̸= q(x2). Thus, q(x1)− q(x2) ̸= 0 and we can define:

p(x) = a1
q(x)− q(x2)

q(x1)− q(x2)
+ a2

q(x)− q(x1)

q(x1)− q(x2)
.
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This function is in P , because P is closed under addition and multiplication. Note that
1

q(x1)−q(x2)
is constant, so even if we cannot divide by functions in P , we can multiply functions

by the constant 1
q(x1)−q(x2)

. We have p(x1) = a1
q(x1)−q(x2)
q(x1)−q(x2)

+ a2
q(x1)−q(x1)
q(x1)−q(x2)

= a1 and p(x2) =

a1
q(x2)−q(x2)
q(x1)−q(x2)

+ a2
q(x2)−q(x1)
q(x1)−q(x2)

= a2, so this p ∈ P strongly separates points, as desired.

Now we are prepared for the full proof of the Stone-Weierstraß Theorem, which, after
having proven all of the lemmas above, will be rather straightforward. We wish to prove the
following theorem:

Theorem 2 (Stone-Weierstraß Theorem). Whenever X is a compact Hausdorff space and
P is a closed unital subalgebra of C(X,R), the set P is dense in C(X,R) if and only if P
separates points in X.

We first quickly prove that if P is dense in C(X,R), P separates points. The reasoning
utilizes many of the special properties of X and compact sets in general.

Proof for Dense ⇒ Separation of Points. Select x, y ∈ X. Select some f ∈ C(X,R) that
may not separate x and y. Since X is Hausdorff, there exists an open set Ux including x
that does not include y. X is closed (as its complement in X, ∅, is open), so X\Ux is closed
as well. Closed subsets of a compact set are compact as well, and continuous functions map
compact sets to compact sets. So X\Ux is compact and f maps it to a compact set in R.
R itself is not compact (as it is not bounded), so some real is not mapped from X\Ux by
f . Define a new function g such that g maps the elements of X\Ux to the same outputs
as f , but maps all of Ux to some real r not in f(X\Ux). This g is continuous: Select any
open set V ∈ R. If it doesn’t include r, its preimage must be in X\Ux and is open by the
continuity of f . If V includes r, the intersection V ∩ g(X\Ux) is open and its preimage
is in X\Ux and is open, by the continuity of f . The preimage of the remaining elements
in V can only be Ux, as only the element in V that can potentially be outputted by g is
r. Thus, g is continuous. And since g(x) = r (as x ∈ Ux), and g(y) cannot equal r (we
defined r ̸∈ g(X\Ux), but g(y) ∈ g(X\Ux)), we have a continuous function g ∈ C(X,R)
that separates the points x, y. Finally, since P is dense in C(X,R), there exists some

p ∈ P such that |g(x) − p(x)| < |g(x)−g(y)|
2

and |g(y) − p(y)| < |g(x)−g(y)|
2

, or, in other words,

p(x) ∈ (g(x)− |g(x)−g(y)|
2

, g(x)+ |g(x)−g(y)|
2

) and p(y) ∈ (g(y)− |g(x)−g(y)|
2

), g(x)+ |g(x)−g(y)|
2

). So
p(x) ̸= p(y) as well, and P separates any points x, y.

Now we proceed with the converse, that if P separates points, P is dense in C(X,R).
This is usually the more useful direction of the Stone-Weierstraß Theorem - proving that P
separates points means just finding valid elements, while proving that P is dense requires
significantly more work. The following proof, along with the lemmas above, are adapted
from Dividson and Donsig [2].

Proof for Separation of Points ⇒ Dense. We wish to prove that for any function f ∈ C(X,R)
and any ϵ > 0, there exists a function p ∈ P such that |f − p| < ϵ. In other words,
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f(x) − ϵ
2
< p(x) < f(x) + ϵ

2
for any x ∈ X. We will first find a function q ∈ P such that

q(x) < f(x)+ ϵ
2
, and then find a function p ∈ P such that f(x)− ϵ

2
< p(x) ≤ q(x) < f(x)+ ϵ

2
.

By Lemma 2, we know that for any x1, x2 ∈ X and a, b ∈ R, there exists a function
r ∈ P such that r(x1) = a and r(x2) = b. Therefore, there exists a function py,z ∈ P such
that py,z(y) = f(y) and py,z(z) = f(z). Define the sets Uz as the sets of elements x for which
py,z(x) < f(x)+ ϵ

2
. In other words, Uz is p

−1
y,z((−∞, f(x)+ ϵ

2
)), and since f is continuous and

(−∞, f(x) + ϵ
2
) is open, its preimage Uz is open too. Also, since py,z(z) = f(z) < f(z) + ϵ

2
,

z is included in Uz. Since z can be any element of X, the collection of open sets Uz∈Z is
an open cover for X. X is compact, so there exists a finite subcover Uzi . The respective
functions py,z are py,zi .

Define py as the minimum of all finitely many py,zi . Since P is a lattice by Lemma 1,
this minimum is in P . Furthermore, py(x) = py,zj(x) < f(x) + ϵ

2
for the minimizing py,zj .

Now define Vy as p−1
y ((f(x) − ϵ

2
,∞)), which, as before, are all open. Again, y ∈ Vy as

py(y) = py,zi(y) = f(y) > f(y) − ϵ
2
. So the Vy form an open cover for X, and there is a

finite subcover Vyi with respective pyi . Define p
′ to be the maximum of all finitely many pyi .

We have p′(x) = pyj(x) < f(x) + ϵ
2
and p′(x) = pyj(x) > f(x) + ϵ

2
for the maximizing pyj .

Since P is a lattice, p′ ∈ P . Elements in P , by the definition of the closure of P , can be
approximated arbitrarily closely by elements of P . So we can find a function p such that
|p′(x)− p(x)| < ϵ

2
and such that |f(x)− p(x)| ≤ |f(x)− p′(x)| + |p′(x)− p(x)| < ϵ

2
+ ϵ

2
= ϵ

for any x ∈ X. Thus, P is dense in C(X,R).

Corollary 1. Notice that we proved that, for any ϵ, there is some p ∈ P for which |f−p| < ϵ.
In other words, |f(x)−p(x)| < ϵ for any x ∈ X, which implies that any function f ∈ C(X,R)
is not only a limit, but also a uniform limit of functions p ∈ P . This is useful for proofs
regarding ergodicity.

Corollary 2. The Weierstraß Approximation Theorem is technically a special case of the
Stone-Weierstraß Theorem: The set of polynomials P is a closed unital subalgebra of
C([0, 1],R), as it is closed under addition and multiplication, and includes the multiplicative
identity (1 is a polynomial). Furthermore, the polynomial x separates any pair of noniden-
tical reals. So P is dense in C([0, 1],R).

However, as we used the Weierstraß Approximation Theorem in our proof above, this
reasoning is circular. Of course, we could prove that |x| can be approximated by polynomials
separately, and then prove the approximation theorem, but that ultimately requires more
effort.

5 Applications

The Stone-Weierstraß Theorem allows us to prove certain statements regarding uniform
limits of functions more easily by only considering the approximating functions (like polyno-
mials). Unfortunately, many special properties of functions, such as measure-preservation or
ergodicity, do not have a condition using limits of functions. However, one highly applicable
theorem, Oxtoby’s Theorem, actually does use limits of functions in order to prove unique
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ergodicity. A transformation is uniquely ergodic if it is ergodic for only one measure, and
this property is equivalent to a condition that does not use measures, as Oxtoby’s Theorem
states:

Theorem 3. (Oxtoby’s Theorem)
Let X be a compact Hausdorff space, and T be a continuous transformation from X to

itself. T is uniquely ergodic if and only if, for any real-valued continuous function f on X,
there exists a constant cf such that:

lim
n→∞

∥∥∥∥∥ 1n
n−1∑
i=0

f ◦ T i − cf

∥∥∥∥∥
∞

= 0.

In other words, the uniform limit of 1
n

∑n−1
i=0 f(T i(x)) is cf . Note that cf can change for

different f .

While we will not prove Oxtoby’s in its entirety here, we do prove that we must only
consider p ∈ P that approximate any continuous, real-valued f .

Proof of Sufficiency of Using Oxtoby’s on Functions in P . First, we assume that, for p ∈ P
and some respective constant cp, the equation limn→∞ ∥ 1

n

∑n−1
i=0 p ◦ T i − cp∥∞ = 0 holds.

For any function f and real ϵ > 0, there exists some pϵ ∈ P such that ∥f − pϵ∥∞ < ϵ. So
∥f ◦ T i − pϵ ◦ T i∥∞ < ϵ for any 0 ≤ i < n. By the Triangle Inequality, we have:

∥
n−1∑
i=0

f ◦ T i − pϵ ◦ T i∥∞ ≤
n−1∑
i=0

∥f ◦ T i − pϵ ◦ T i∥∞ < nϵ.

Hence:

∥ 1
n

n−1∑
i=0

f ◦ T i − pϵ ◦ T i∥∞ =
1

n
∥

n−1∑
i=0

f ◦ T i − pϵ ◦ T i∥∞ < ϵ.

Finally, let n′ be a sufficiently large positive integer such that ∥ 1
n′

∑n′−1
i=0 pϵ ◦ T i − cpϵ∥∞ < ϵ

for the same ϵ as above. Then, we can use the Triangular Inequality again to ultimately
get ∥ 1

n′

∑n′−1
i=0 f ◦ T i − cpϵ∥∞ ≤ ∥ 1

n′

∑n′−1
i=0 pϵ ◦ T i − cpϵ∥∞ + ∥ 1

n′

∑n′−1
i=0 f ◦ T i − pϵ ◦ T i∥∞ <

ϵ + ϵ
n
. Since ϵ > 0 is arbitrary, and the cpϵ converge to a constant cf , we conclude that

limn→∞ ∥ 1
n

∑n−1
i=0 f ◦ T i − cf∥∞ = 0, as desired.

Sometimes, we do not want to just use polynomials from the Weierstraß Approxima-
tion Theorem. Instead, we’d often want to use a function based on sines and cosines, so
that the integral over [0, 1) could be 0 (which makes the constant cf in Oxtoby’s Theorem
nice). Fortunately, we can also approximate functions arbitrarily closely by what are called
“trigonometric polynomials”:

Definition 9. A trigonometric polynomial of degree n is of the form
∑n

k=0 ak cos(kx) +
bk sin(kx) for real ai, bi. Equivalently, they are expressible as

∑n
k=−n cke

2iπkx for potentially

imaginary ci, since the polynomials are equal to
∑n

k=0(ak
e2iπkx+e−2iπkx

2
+ bk

e2iπkx+e−2iπkx

2i
) by

Euler’s formula.
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Proof That Trigonometric Polynomials Are Dense. We prove that trigonometric polynomi-
als approximate functions in Cp([0, 2π],R), which consists of periodic continuous functions.
By the Stone-Weierstraß Theorem, we must simply prove that the set of trigonometric poly-
nomials is a closed unital subalgebra of Cp([0, 2π],R) and the set separates points (except
the pair 0 and 2π, as they are equivalent in Cp([0, 2π],R)).

First, this set is clearly closed under addition, as the sum of powers of e2iπx remain the
sum of powers of e2iπx. Furthermore, the product of sums of powers of e2iπx is also of the
form

∑n
k=−n cke

2iπkx, as the product of pairs of individual terms (which ultimately sum to
the full product) are sums of powers of e2iπx. Furthermore, by letting c0 = 1 but ci = 0 for
all other i, we obtain the identity function 1. Thus, the set of trigonometric polynomials is
a closed unital subalgebra.

Next, we prove that that set separates points. When x, y ∈ [0, π) or x, y ∈ [π, 2π], we can
use the trigonometric polynomial cos(x), which has different outputs for x, y unless x = y.
Otherwise, when x ∈ [0, π] and y ∈ (π, 2π), or y ∈ [0, π] and x ∈ (π, 2π), we use sin(x),
which, again, has different outputs except when x = y.

These dense trigonometric polynomials serve as the foundation for Fourier series. The
issue is, of course, that the Stone-Weierstraß Theorem does not give us the approximat-
ing trigonometric polynomials. It turns out that the Fourier series of a real-valued func-
tion f (i.e. the trigonometric polynomial that approxmates f) on [0, 2π] is defined as∑n

k=0

(
( 1
2π

∫ 2π

0
f(x) cos(kx) dx) cos(kx) + ( 1

2π

∫ 2π

0
f(x) sin(kx) dx) sin(kx)

)
.

If the coefficients for the sine and cosine terms converge to 0, we can approximate f
by a Fourier series with a finite number of terms. This is especially useful when working
with computers, as the latter can only have a finite amount of memory. Hence, whenever a
computer uses an arbitrary continuous function (such as RGB colors in images), it transforms
the function into the simpler, finite Fourier series approximation. While this transformation
may result in some reduction in quality (in the case of images), it also allows the computer to
store the data and perform calculations on the approximated function more easily. Fourier
series are, therefore, so integral to all modern computer systems.

6 Conclusion

The Weierstraß Approximation Theorem, as well as its generalization, the Stone Weierstraß
Approximation Theorem, allow us to prove statements on continuous real-valued functions
by only checking that those statements are satisfied by certain sets of functions that sep-
arate points. A common application of these theorems is checking unique ergodicity of
transformations. While simple polynomials can approximate continuous functions on closed
intervals, trigonometric polynomials are often a more useful type of approximating function,
and they form an essential part of Fourier series. These series, in turn, have applications
within computers and various other pieces of technology.

10



References
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