Mandelbrot Set

Grace Howard

March 2024

Introduction

The Mandelbrot set is generated with iteration. The seed of the iteration will be denoted x_0 . Then, the function $x^2 + c$ can be applied to get

$$
x_1 = x_0^2 + c.
$$

Continuing from this,

$$
x_2 = x_1^2 + c
$$

$$
x_3 = x_2^2 + c
$$

$$
\vdots
$$

The numbers x_0, x_1, x_2, \ldots are often of interest.

More formally,

Definition 0.1 (Mandelbrot set). The *Mandelbrot set M* is the set of all values c for which the sequence

$$
0, P_c(0), P_c(P_c(0)), \ldots
$$

where

$$
P_c: z \to z^2 + c
$$

does not go to infinity for all $z \in \mathbb{C}$.

Figure 1: The Mandelbrot set.

Definition 0.2. Let $Q_c: z \mapsto z^2 + c$. Let K_c denote the filled Julia set of Q_c . The Mandelbrot set is the set of parameters c for which K_c is connected. This is equivalent to saying that $c \in M$ if and only if $0 \in K_c$. From this

$$
Q_c^{\circ n}(0)\to\infty
$$

if $c \notin M$.

Other terms relevant to the Mandelbrot set include:

Definition 0.3 (Bulb). The main cardoid is the subset of the complex plane such that $c = \frac{1-(\mu-1)^2}{4}$ $\frac{a^{(l-1)/2}}{4}$ for some $\mu \leq 1$. The *bulb* at $c = \frac{-3}{4}$ is a circle with radius $\frac{1}{4}$ around -1 . The bulb is the subset of the complex plane such that P_c has a cycle of period 2.

Definition 0.4 (Orbit). The orbit is the sequence z_0, z_1, z_2, \ldots where $z_n + 1 =$ $P_c(z_n)$. The critical orbit is the orbit with $z = 0$. The fate of the critical orbit (whether it escapes to infinity or not) determines whether c is in the Mandelbrot set.

More Definitions

Definition 0.5. A function $f: \mathbb{C} \to \mathbb{C}$ is *complex differentiable* at $z \in \mathbb{C}$ if

$$
\lim_{h \to 0} \frac{f(z+h) - f(z)}{h}
$$

exists for $h \in \mathbb{C}$. If f is complex differentiable at every $z \in U \subset \mathbb{C}$, then f is holomorphic on U.

Definition 0.6. Let $\Lambda, V \in \mathbb{R}^2$ denote two measurable sets. Additionally, let V satisfy $0 < \lambda(V) < \infty$. Define the *density* of Λ in V be

$$
d_V(\Lambda) = \frac{\lambda(\Lambda \cap V)}{\lambda(V)}.
$$

Definition 0.7. Let U be a connected open subset of \mathbb{C} and $f: U \to \mathbb{C}$ and $f: U \to \mathbb{C}$ be a holomorphic function. The distortion of f on U is defined as

$$
dist_U(f) = \sup_{x,y \in U} \left| \log \frac{f'(y)}{f'(x)} \right|.
$$

Definition 0.8. A number $c \in \mathbb{C}$ is called a *critically non-recurrent* parameter is the critical point 0 of the quadratic Q_c does not belong to the closure of its forward orbit $\{Q_c^{\circ n}(0)\}_{n\geq 1}$.

Definition 0.9. Let M be a manifold. If the inner product $\langle \cdot, \cdot \rangle$ is defined on a tangent space T_xM of M at every x, then the collection of these inner products is called the Riemannian metric.

Definition 0.10. f is expanding on Λ if there exists a neighborhood V of Λ in Ω and a continuous function $u: V \to \mathbb{R}^*_+$ such that f is strongly dilating on Λ for the Riemannian metric defined by u .

Definition 0.11. A holomorphic map f is strongly dilating on Λ for the Riemannian metric defined by u if there exists a $\lambda > 1$ such that for every $x \in \Lambda$

$$
||T_xf|| = \frac{u_1(f(x))}{u(x)}|f'(x)| \le \lambda.
$$

The filled-in Julia set of a polynomial $f: \mathbb{C} \to \mathbb{C}$ of degree $d > 1$ is the set of points K_f of points z for which

$$
f^{\circ n}(z) \not\to \infty.
$$

Theorem 1. Let $f: U \to \mathbb{C}$ be a holomorphic map and let $\Lambda \subset U$ be a compact set such that $f(\Lambda) \subset \Lambda$ and f is expanding on Λ . Then, Λ has Lebesgue measure 0.

Proposition 2. Let $f: U \to \mathbb{C}$ be a holomorphic map. Let $\Lambda \subset U$ be a compact set and let $V \subset U$ be an open set such that $f|_V$ is injective. If $dist_V(f) \leq m$,

$$
1 - d_{f(V)}f(\Lambda) \le e^{2m}(1 - d_V(\Lambda)).
$$

Proof. Let $h = \inf_{V} |f'|$. Then,

$$
\lambda(f(V)) \ge h^2 \lambda(V)
$$

and

$$
\lambda(f(V)\backslash f(\Lambda))\leq \Lambda(f(V\backslash\Lambda)).
$$

Additionally,

$$
\lambda(f(V \backslash \Lambda)) \leq h^2 e^{2m} \lambda(V \backslash \Lambda)
$$

=
$$
h^2 e^{2m} (1 - d_V(\Lambda)) \lambda(V).
$$

From this,

$$
1 - d_{f(V)}f(\Lambda) = \frac{\lambda(f(V)\backslash f(\Lambda))}{\lambda(f(V))}
$$

$$
\leq e^{2m}(1 - d_V(\Lambda)).
$$

 \Box

Let $f : \Omega \to \Omega_1$ be a holomorphic map with $\Omega, \Omega_1 \subset \mathbb{C}$ being open subsets equipped with Riemannian metrics defined by u and u_1 . For $x \in \Omega$ the norm of $T_x f : T_x \Omega \to T_{f(x)} \Omega_1$ is

$$
||T_xf|| = \frac{u_1(f(x))}{u(x)}|f'(x)|.
$$

Theorem 3. Let U be an open subset of \mathbb{C} , and let $f: U \to \mathbb{C}$ be a holomorphic map. Additionally, let $\Lambda \subset U$ be a compact set such that $f(\Lambda) \subset \Lambda$ for which f is expanding on Λ . Then, for every $m > 0$ there exist $a > 0$ and $b > 0$ for which all $\epsilon \in [0, a], x \in \Lambda$, there exists an $n \in \mathbb{N}$ such that

$$
B(f^{\circ n}(x) \subset f^{\circ n}(B(x, \epsilon)) \subset B(f^{\circ n}(x), b).
$$

Lemma 4. The set Λ has empty interior.

Proof. The proof is omitted.

 \Box

Proof. Assume $\lambda > 0$. Choose $m > 0$ and let (ρ_n) be a sequence of positive numbers such that

$$
\lim_{n \to \infty} \rho_n = 0.
$$

By proposition 5.2, for each ν there exits a point $x_{\nu} \in \Lambda$ such that

$$
d_{B(x_{\nu},\rho_{\nu})}(\Lambda) \to 1.
$$

By theorem 5.1, there are numbers a and b and for each ν , $n_{\nu} \in \mathbb{N}$ such that

$$
B(y_{\nu}, a) \subset f^{\circ n_{\nu}} B(x_{\nu}, \rho_{\nu})
$$

and

$$
f^{\circ n_{\nu}}B(x_{\nu}, \rho_{\nu}) \subset B(y_{\nu}, b)
$$

where $y_{\nu} = f^{\circ n_{\nu}} x_{\nu}$. Additionally,

$$
dist_{B(x_{\nu},\rho_{\nu})}(f^{\circ n_{\nu}}) \leq m.
$$

From this,

$$
1 - d_{B(y_\nu, a)}(\Lambda) \le \frac{b^2}{a^2} (1 - d_{f^{\circ n_\nu} B(x_\nu, \rho_\nu)}(\Lambda))
$$

and

$$
\frac{b^2}{a^2}(1 - d_{f^{\circ n_{\nu}B(x_{\nu},\rho_{\nu})}}(\Lambda)) \le \frac{b^2}{a^2}e^{2m}(1 - d_{B(x_{\nu},\rho_{\nu})}(\Lambda)) \to 0.
$$

Assume that

$$
\lim_{n \to \infty} y_{\nu} = y
$$

and

$$
|y - y_{\nu}| < \frac{a}{2}
$$

for all ν . Then, $B(y, \frac{a}{2}) \subset B(y_{\nu}, a)$ and

$$
1 - d_{B(y, a/2)}(\Lambda) \le 4(1 - d_{B(y_\nu, a)}(\Lambda)) \to 0.
$$

Given this doesn't depend on ν ,

$$
d_{B(y,a/2)}(\Lambda) = 1
$$

and

$$
\Lambda \supset B(y, a/2)
$$

since Λ is compact. By the previous lemma, this is a contradiction.

 \Box

Theorem 5. If f is hyperbolic,

$$
\lambda(J_f)=0.
$$

 \Box

Proof. This follows from the above theorem.

It is not known if $J_f = \partial K_f \cap \mathbb{R}$ has

$$
\lambda(J_f)=0
$$

for every polynomial f .

Additionally, the set of parameters $c \in \partial M \cap \mathbb{R}$ for which the quadratic Q_c is critically non-recurrent has Lebesgue measure 0.