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Abstract

Entropy is an important concept in physics: The information of an event that occurs in a system. In this
paper, we’ll explore how it can be defined in measure-theoretic scenarios. Specifically, we’ll consider measure-
preserving dynamical systems (X,A, µ, T ). Then, we’ll take a look at the information theory version,
exploring different typographical languages and their structure. We’ll see how they can be represented with
graphs, explore a certain notion of ergodicity among them, and finally, define entropy on them.

1 Introduction

Definition 1.1 Take a countable (finite or countably infinite) partition α = {A1, A2, . . .} of a space (X,A, µ, T )
as above. We define the information function of α to be

I(α)(x) = −
∑
A∈α

1A(x) · log2 µ(A),

where 1A is the indicator function of A. We define the entropy of α to be

H(α) =

∫
I(α)dµ = −

∑
A∈α

µ(A) log2 µ(α).

What’s the motivation behind these definitions?

(The following is from [2]) well, let’s think about how we want entropy to be defined. Let’s say we have a
point x ∈ X that we want to ‘locate’. The fact that x ∈ Aj gives us information about the location of x. We
want to have the knowledge x ∈ Aj always give the same amount of information, i.e. if x1 and x2 are two
points we want to locate, then we want x1 ∈ Aj to have the same information value as x2 ∈ Aj . Also, we want
to consider X ∈ Aj to be more informative if Aj is a smaller set (in the sense that µ(Aj) is small), and less
informative if it’s a bigger set. Basically, I(α)(x) is equal to the ‘value’ of the information t ∈ Aj for the Aj ∈ α
that contains x, whatever this ‘value’ is. We’d like the value of the information t ∈ Aj to depend on µ(Aj), so
we can take it to be ϕ(µ(Aj)) for some function ϕ we choose. So I(α)(x) = ϕ(µ(Aj)) for the Aj containing x.
Another way of writing this is

I(α)(x) =
∑
A∈α

1A(x) · ϕ(µ(A)).

Look familiar? This is the same as our definition except with log2 instead of ϕ, and a negative sign in front, or
basically just − log2 replacing ϕ. Why is − log2 a good choice for our function ϕ?

Definition 1.2 Let α = {A1, A2, . . .} and β = {B1, B2, . . .} be two partitions. Define the join of α and β
to be

α ∨ β = {Ai ∩Bj : Ai ∈ α,Bj ∈ β}
(it’s not too hard to see that this is a partition as well). We say that two partitions α and β are independent if

µ(Ai ∩Bj) = µ(Ai)µ(Bj)
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for all i, j.

It seems nautral to require that the information we obtain by using two independent partitions together should
be equal to the sum of the information received using each partition seperately, i.e.

I(α ∨ β) = I(α) + I(β).

But then ∑
A∈α,B∈β

1A∩B(x) · ϕ(µ(A ∩B)) =
∑

A∈α,B∈β

1A∩B(x) · ϕ(µ(A)µ(B))

= I(α ∨ β) = I(α) + I(β) =
∑
A∈α

1A(x) · ϕ(µ(A)) +
∑
B∈β

1B(x) · ϕ(µ(B)) =
∑

A∈α,B∈β

1A∩B · (ϕ(µ(A)) + ϕ(µ(B))).

The last equality is true because if x ∈ A∩B, then the left side is just ϕ(µ(A)) + ϕ(µ(B)) and the right side is
also ϕ(µ(A)) + ϕ(µ(B)). Hence we require that

ϕ(µ(A ∩B)) = ϕ(µ(A)µ(B)) = ϕ(µ(A)) + ϕ(µ(B)).

If we assume that ϕ is continuous, then one can check that we are forced to take ϕ(t) = loga(t) =
log2(t)
log2(a)

for

some a. It is nautral to choose − log2(t) = log 1
2
(t) (the negative sign is there since 0 ≤ t ≤ 1 so that the

logarithim is positive).

2 Information-Theoretic Entropy

We can also think of entropy in terms of information theory. Let’s say you want to generate a string of letters,
say your alphabet is A, B, C, D, and E, and you want to assign a probability for each letter’s occurance at any
given time. You could assign them equal probabilities, so you have no information about what will happen, or,
say, give A a really low probability of occuring. These different options give different amounts of information
about what will happen, and there’s different amouts of “choice”, i.e. different degrees of freedom in your choice
for each letter.

To quantify this, we want H(pA, pB, pC, pD, pE), where the p’s are the probabilities of each letter’s occurance,
that signifies how uncertain we are of the selection of the letter at a given point. We define H as a function on
sets of random events with probabilities p1, . . . , pn.

(The following comes from [1].) There are a few properties we want H to satisfy:

1) H should be continuous in the pi (where pi are the probabilities of the events in the system, as before).

2) If all the pi are equal, i.e. pi =
1
n , then H should be a monotonic increasing function of n: With equally

likely events there’s more uncertainty when there are more possible events.

3) If a choice can be broken down into two succesive choices, the original H should be the weighted sum
of the individual values of H.

The meaning of 3) is illustrated in the diagram below. On the left there’s three possibilities, say a, b, and
c, with probabilities p1 = 1

2 , p2 = 1
3 , and p3 = 1

6 respectively. On the right we first choose between two
possibilities each with probability 1

2 , and if the second occurs we make another choice with probabilities 2
3 and

1
3 . The first two events represent chossing between having a1 or having either of a2 and a3 happen, and if a2 or
a3 happens, choose which one of those. The final results have the same probabilities as before, and our property
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states that H
(
1
2 ,

1
3 ,

1
6

)
= H

(
1
2 ,

1
2

)
+ 1

2H
(
2
3 ,

1
3

)
because of this.

• •

• • • •

•

• •

1
3

1
6

1
2

1
2

1
3

2
3

1
2

The functions

H = −K

n∑
i=1

pi log2 pi

(where n is the amount of events) for some positive constant K turn out to be the only choices satisfying these.
We choose K = 1 since K merely anounts to a coice of base for the logarithm.

That was the simpler case where the only structure in the sequence generated is the probabilities of each
letter’s occurance. What if, say we add that E can never come after A? What if the probability of a letter being
typed is affected by the previous letter, or even the previous two letters? We’re going to explore another aspect
of these systems: The state the system is in at a given slot.

3 States of systems

As an example, let’s try to create a program that is able to generate English sentences. We will say there’s a
27-character alphabet, the 26 letters and space as the 27th character (this ignores capitals and punctuation,
we’re just focused on words and spaces here). The program can’t just type in any string of symbols it wants,
like “Vdvj er eg sfjsnfuijiuew drgersiksr ersuer.” That’s not a proper English sentence. To be able to generate
only actual sentences, we need to know what exactly distinguishes it from proper sentences.

Well, one thing is that there’s three spaces between “eg” and “sfjsnfuijiuew”; there can’t be spaces after other
spaces in English sentences. We could create states of our system representing this rule. Like, say, being in
state A means you can put anything you want, and being in state B means you can put any letter, just not a
space. Then the system is in state A if the previous character was anything except a space, and it’s in state B
if the previous character was a space (or at the beggining of the program; you can’t start with a space). This
prevents spaces coming after spaces (or, like I said, starting with a space), because after a space you’re in state
B and you can’t put another space.

Also, another rule is that there’s always a “u” after any “q” (which our “sentence” doesn’t break but this
still is a rule). We can create rules for states representing this, or better, a combined system for both of our
rules. State A and state B are as before, and state C means you can only put a “u”. State A is active if the
previous character was a letter other than “q” this time, state B is active if the previous character was a space
or it’s the start of the program (like before), and state C is active if the previous letter was “q”.

There’s also a probabilistic element to this. Some letters are more likely to appear in words than others.
For example, “e” is the most common letter in the English language. That sentence had eight e’s (not counting
the one in the quote)! Letters like “q”, “j”, and “z” are not so common– this sentence has none of those. There’s
also letter combinations (and character combinations possibly including spaces) that are more likely to appear
than others.

For this, instead of states determining just which characters are possible, we have states determining the proba-
bilities of each character occuring (which may include the probability 0). We not only consider the probability
of a given character c occuring, call this p(c) (I don’t mean of the letter c, I mean Latex c standing for a variable

3



character), but pS(c), the probability of typing the character c given that we’re in state S.

Now, let’s say we have a system like our thing with states A,B, and C, in that states of the system are
determined by whether there was a previous character and what it was if so. We can let pc1(c2) for characters
c1,2 be just pS(c2), where S is the only state that’s activated if c1 was the previous letter (it can be activated
by more than one letter, just c1 at least). There’s also a thing called p(c1, c2), the general probability of the
digram c1c2 occuring (its relative frequency, basically).

p(c), pc1(c2), and p(c1, c2) are related by the following formulas:

p(c1) =
∑
c2

p(c1, c2) =
∑
c2

p(c2, c1) =
∑
c2

p(c2)pc2(c1)

p(c1, c2) = p(c1)pc1(c2)∑
c2

pc1(c2) =
∑
c1

p(c1) =
∑
c1,c2

p(c1, c2) = 1.

But there can be other systems where states have different rules for being activated. For example, take the let-
ters A, B, C, D, and E again for the characters. Suppose State 1 is activated by having the previous two letters
be DB, State 2 is activated by being at least the third character but the previous two letters not being DB, and
State 3 is activated by being the first or second letter. Note that I made the states numbered this time so they
don’t get confused with the characters, but it doesn’t matter what they’re called, just how they behave. I also
didn’t specify what happens when a state is activated, but that doesn’t matter either for this particular example.

What matters here is that the states depend on the previous two characters (and if there are two charac-
ters before), not just the previous one. In cases like these, we can consider pc1,c2,...,cn−1

(cn), pS(cn) where S
is the state activated by c1c2 · · · cn−1 being the previous characters. We can also consider p(c1, . . . , cn), the
relative frequency of the sequence c1 · · · cn (called an n-gram).

4 Ergodicity

Now, these systems can be represented using graphs. The junction points in the graphs will represent the
different states of the system, the arrows between points will represent characters changing the system from
one state to another, and the probabilities of the character occuring (given the state) will be given beside the
corresponding arrow. Note that sometimes, not all characters will have an arrow between any two points. This
represents there being a 0% chance of that character being typed given the state. There’s also the detail about
what state are we in at the start of the program, but we’ll ignore that for now.

There’s a notion of ergodicity among these systems which we’ll define. First,

Definition 4.1 A closed series of lines in the graph with all arrows on the lines pointing in the same ori-
entation will be called a circut. The length of a circut is the number of lines in it.

Now for ergodicity :

Definition 4.2 A system is said to be ergodic if it satisfies two properties:

1) The graph doesn’t consist of two isolated parts A and B such that it’s impossible to go between junc-
tion points in one part to points in the other along lines of the graph in the direction of arrows.

2) The greatest common divisor, or gcd of the lengths of all circuts in the graph is 1.
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Below is an example of an ergodic system.

•

• •

•

A, 15 A, 23

C,1

B, 45

C, 12
B, 12

C, 13

(The following is from [1].) Now, if 1) is satisfied but 2) isn’t, then the sequences will have a certain periodic
structure. If d is the gcd of the lengths of all the circuts, then this means that d > 1, which makes the sequences
have a certain type of periodic structure. The sequences you can make fall into d different categories which are
statistically the same apart from a shift of the origin, i.e. which letter in the sequence is called letter 1. By a
shift of from 0 up to d − 1 any sequence can be made statistically equivalent to any other. A simple example
with d = 2 is the following: We have three characters a, b, and c. If the previous letter was a, it types either
b or c with probabilities 1

3 and 2
3 respectively. If the previous letter was b or c, it always types a (the diagram

below shows this).
•

•

•

b, 12

c, 12

a,1

a,1

A typical sequence would be something like

abacacabacacacabacabacac....

We’re not going to be focusing on this type of situation here.

If the first condition, 1) isn’t satisfied, the graph can be seperated into a set of subgraphs each of which
satisfies the first condition. We will assume the second condition is satisfied for each subgraph, those are the
cases we’re going to work with for this last part.

This notion of seperating a graph can be thought of as a sum of subgraphs. Basically, if we call the graph
L and call its subgraphs L1, L2, L3, · · · , we represent

L = L1 + L2 + L3 + · · ·

...sort of. We also have to take into account the probability of the system’s state at the start being in a given
Ln; you always stay in the same subgraph. Call this probability pn. You could write

L = p1L1 + p2L2 + · · ·

since you only get a ‘portion’ pn of Ln– the probability that you end up in Ln in the first place. And of course,
we require that the sum of these pn be 1. Basically, to generate a sequence in L, you start by choosing an Ln

with probability pn, then generating a sequence from whichever Ln was chosen.

We now define entropy in the more general case. For any possible state S we have our set of probabilities
pS(c) from before for each character c. So there’s an HS for each S, recalling that

HS =
∑
c

pS(c) log2 pS(c).
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We will define the entropy of the system as the average of these HS weighted in accordance with the probability
of occurence of the states in question, or:

Definition 4.3 We define the entropy of a system to be

H =
∑
S

PSHS = −
∑
S,c

PSpS(c) log2 pS(c),

where PS is the general probability of being in state S.

For more details on measure-theoretic entropy, see [2], or for more of the information-theoretic stance, see [1].
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