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1 Lp spaces

Occurring at the intersection of a multitude of motivations in mathematics, the Lp spaces
find themselves a central object of study in many disciplines. The Lp spaces are vector spaces
of functions, comprised of those measurable functions on a measure space (X,A, µ) whose
p-th power is (Lebesgue) integrable. The general Lp spaces generalize the notions of L1,
comprised simply of the integrable functions, and L2, which the reader familiar with Fourier
analysis may recognize as the space of square-integrable functions. It happens that the
notion of the Lp spaces carries several nice properties that make it a focal object of study,
which we will attempt to outline in this paper.

Definition 1.1 (Lp space). For 1 ≤ p < ∞ and a measure space (X,A, µ), the space
Lp(X,A, µ) consists of the measurable functions f that satisfy∫

X

|f |p dµ < ∞.

When the underlying measure space (X,A, µ) is understood, we write simply Lp.

We will eventually end up proving the Lp spaces are Banach spaces, i.e. complete normed
vector spaces (see Definition 2.6). Firstly, a function space of functions from a set to a
vector space receives a natural vector space structure given by pointwise addition and scalar
multiplication, so we have the latter free of charge.

Thus it stands to define a norm on Lp, the notion of which we define more explicitly in
Definition 2.1. For now, consider it a measure of the ”magnitude” of the function in some
fashion.

Definition 1.2 (Lp-norm). The Lp-norm ∥f∥p on measurable functions f is given by

∥f∥p =
[∫

X

|f |p dµ
] 1

p

.

The Lp norm is technically defined for 0 ≤ p < 1, but is not a valid norm as it fails the
triangle inequality—see Definition 2.1 for an axiomatic definition of the norm. This is also
why we restrict p ≥ 1 in Definition 1.1. We will be working exclusively with 1 ≤ p ≤ ∞ for
the purposes of this paper.

We also allow functions to have ∥f∥p = ∞, so an equivalent definition for an Lp space is

Lp(X,A, µ) = {f : X → R : f is measurable and ∥f∥p < ∞}.

Notice by definition, however, that ∥f∥p = 0 does not imply f = 0, but rather that f = 0
almost everywhere. This would fail one of the norm axioms, which dictates that the Lp norm
must be zero if and only if f = 0. To alleviate this, the precise definition of Lp consists of
equivalence classes of functions.

We simply define an equivalence relation on Lp in which f ∼ g when f = g almost
everywhere, because the Lebesgue integral ignores sets of measure zero. It follows that the
only equivalence class of functions whose Lp norm is zero consists of exactly those functions
that differ from f = 0 on a set of measure zero, so the original issue is no longer of concern.
This consideration will rarely need to be accounted for, however, and we may work with
elements of Lp as if they were functions.
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1.1 Examples of finite Lp spaces

We provide some examples of common Lp spaces and their Lp-norms.

1.1.1 Common Lp norms

• (Rn,L, λ). Perhaps the most common example of a measure space, let L be the
Lebesgue σ-algebra and λ the Lebesgue measure. This produces a ”continuous” Lp-
space with the Lp-norm defined naturally as

∥f∥p =
[∫

Rn

|f(x)|p dx
] 1

p

.

• (Z,M, µ). We may also take a ”discrete” type of Lp space, defined on X = Z and
with µ the counting measure. A measurable function on this measure space takes the
form of a sequence of real numbers {an}n∈Z, where f(x) = ax. Thus we may replace
the integral in the Lp-norm with a sum, with the Lp-norm defined as

∥f∥p =

[
∞∑

x=−∞

|ax|p
] 1

p

.

1.1.2 Common values of p

• L1(X,A, µ). L1 corresponds to the space of all integrable functions on (X,A, µ); this
is obviously useful for all sorts of applications that require integration.

• L2(X,A, µ). L2 is notable for being the space of all square-integrable functions, which
stems from issues in Fourier analysis. p = 2 is also a special case because it is its own
Hölder conjugate: 1

2
+ 1

2
= 1, and L2 is unique for being the only Lp space that is also

a Hilbert space (briefly, a complete vector space equipped with an inner product that
induces the metric).

• L∞(X,A, µ). L∞ is the conjugate of L1, see above. L∞ also consists of the essentially
bounded functions—those functions for which there exists a constant c such that the
set of all x for which f(x) > c has measure zero. See Subsection 1.2 for more details.

1.2 L∞

We would like to be able to consider Lp spaces for all nonnegative p, but we run into some
obstacles in doing so. We have already had to disregard Lp for 0 ≤ p < 1, as the Lp-norm
fails an axiom; at risk of losing another useful notion, the case p = ∞ requires further care:
how do we define the infinite power and 1

∞th power of something?
We have to construct a separate space for the case p = ∞ satisfying similar notions to

those of Lp spaces for finite p. Recall that the Lebesgue integral of a measurable function
f is the supremum of the integral of all simple functions strictly less than or equal to f ;
it follows that we would like to replace the notion of supremum with a construction better
suited for the infinite case. In particular, we would like to ignore what the function does at
a set of points of measure zero.
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Definition 1.3 (Essential supremum). The essential supremum is the smallest value that is
greater than or equal to the function values everywhere except on a set of measure zero, i.e.

ess supX f = inf{a ∈ R : µ{x ∈ X : f(x) > a} = 0}.

Definition 1.4 (L∞ norm). ∥f∥∞ = ess supX |f |.

We may then use this L∞-norm in defining the space L∞ in the same way we did in
Section 1. As an example of why this definition is useful, see that the equivalence relation
on Lp holds: the definition of essential supremum may be replaced by

ess supX f = inf{sup
X

g : g = f pointwise almost everywhere},

from which it follows that the equivalence relation on Lp, where we identify functions equiv-
alent almost everywhere, is still valid.

2 Motivation and Applications

A driving question behind all mathematical studies is always that of importance—why
should we care? It turns out that Lp spaces pop up when generalizing from several directions,
and they are endowed with a variety of properties that we will find useful. This section will
cover those motivating directions as well as the properties which make Lp spaces such focal
objects of study.

2.1 From metric spaces

Viewing the Lp spaces as metric spaces under the metric induced by the Lp-norm positions
them both as a natural generalization of the p-norm in finite Euclidean space and a special
type of Banach space, both of which we will now explore.

2.1.1 The p-norm

In this section, we are assumed to be working in Rn unless stated otherwise. Consider
the value of defining various notions of distance on a space, the motivation driving the study
of metric spaces. For instance, take the Euclidean, taxicab, and Chebyshev metrics on R2,
shown in Figure 1.

Each has different utilities—the Euclidean metric sees use most often in the plane with
regards to geometry problems, the taxicab metric is so named for the number of blocks a
taxi driver in a city with a grid layout would have to drive, and the Chebyshev metric can
be thought of as the number of moves a king would have to make on a chessboard.

Consider their mathematical definitions in R2; suppose we are travelling a horizontal
distance x and a vertical distance y. Then the distances are calculated as follows:

• Euclidean:
√

x2 + y2, ”as the crow flies;”

• Taxicab: x+ y, the sum of the horizontal and vertical distances;

4



Figure 1. A comparison of the Chebyshev (king’s move), Euclidean (shortest path), and
taxicab (cardinal directions only) metrics.

• Chebyshev: max{x, y}, whichever is longer.

We may desire to generalize these notions of distance. Rather than do this through a
metric, we choose to do it through a norm that induces a metric; norms provide a generalized
notion of magnitude rather than a specific notion of distance, the former of which will prove
more useful for our purposes.

Definition 2.1. On a vector space V , a norm is a function ∥ · ∥ : V → R≥0 satisfying the
following properties:

1. Positive definiteness: ∥v⃗∥ = 0 if and only if v⃗ = 0⃗.

2. Absolute homogeneity: ∥sv⃗∥ = |s| · ∥v⃗∥ for all v⃗ ∈ V and scalars s.

3. Triangle inequality: ∥v⃗ + w⃗∥ ≤ ∥v⃗∥+ ∥w⃗∥ for all v⃗, w⃗ ∈ V .

Definition 2.2. An normed vector space is a vector space equipped with a norm.

Notably, on a normed vector space, there is a naturally induced metric d defined by the
norm of the difference of the two vectors: d(v⃗, w⃗) = ∥x⃗ − y⃗∥. Conversely, if a metric is
absolutely homogeneous and translation invariant, meaning d(v⃗, w⃗) = d(v⃗ + a⃗, w⃗ + a⃗) for all
vectors a⃗, then that metric is induced by the norm defined by ∥v⃗∥ = d(v⃗, 0).

Note that the Euclidean, taxicab, and Chebyshev metrics satisfy the latter properties,
and therefore have associated norms that induce them, named correspondingly. We may
finally generalize the notion of distance, as desired, by generalizing the norms that induce
the metrics we wanted. This is done through the p-norm ∥x⃗∥p, defined on a vector x⃗ as
follows:

Definition 2.3 (The p-norm on vectors). ∥x⃗∥p = (|x1|p + |x2|p + · · ·+ |xn|p)
1
p .

For 0 ≤ p < 1, this does not define a norm, as it fails the triangle inequality; thus the
p-norms are only valid norms for p ≥ 1.

Notice that the Euclidean norm is the 2-norm, the taxicab norm is the 1-norm, and the
Chebyshev norm is the limit of the p-norms as p → ∞, often simply called the ∞-norm;
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the corresponding metrics are induced similarly. Defining the general p-norm allows us to
generalize this beyond these three special cases to any value of p we so desire.

This naturally extends to the space of measurable functions on Rn, which we have already
seen is endowed with a vector space structure. (There is an intermediate—the ℓp spaces,
sequence spaces where the p-norm is extended to vectors of infinite length, but we will
not cover those.) The analogy between the p-norm on vectors in Rn and the Lp norm on
measurable functions can be seen as follows. First, rewrite the definition of the p-norm using
summation notation:

∥x⃗∥p =

[
n∑

i=1

|xi|p
] 1

p

.

We may visualize a function f as, in a sense, some kind of infinite-dimensional vector
with entries corresponding to the values f takes on. Then we may replace the sum with the
integral of f , such that

∥f∥p =
[∫

X

|f |p dµ
] 1

p

.

Of course, this notion is not entirely correct, but it serves to show how easily the Lp-norm,
and thus the Lp spaces, arise from an elementary construction on metric spaces. Notice the
other similarities as well—the triangle inequality failing for 0 ≤ p < 1, the significance of
the cases p = 1, 2,∞, and so on.

2.1.2 Banach spaces

As mentioned, Lp spaces are a class of Banach spaces, which are complete normed vector
spaces. We have already introduced the concept of a normed vector space, so it stands to
reintroduce completeness, for which Cauchy sequences are a prerequisite:

Definition 2.4 (Cauchy sequence). In a metric space (X, d), a sequence {xi}i∈N is Cauchy
if for every positive real ε > 0, there exists a positive integer N such that for all positive
integers m,n > N , d(xm, xn) < ε.

Essentially, a Cauchy sequence is a sequence whose elements become arbitrarily close to
each other as the indices tend to infinity. Completeness is then the requirement that every
Cauchy sequence converges to an element in the metric space:

Definition 2.5 (Completeness). A metric space (X, d) is complete if every Cauchy sequence
in (X, d) converges to an element in X.

Definition 2.6 (Banach space). A Banach space is a complete normed vector space.

We will show in Subsection 3.3 that Lp spaces are Banach spaces. A natural question is,
of course, why does this matter? First of all, completeness is a very useful notion in and of
itself—it allows us to define functions as limits of functions that we better understand, as
opposed to having to work with some unwieldy and difficult-to-characterize function.

Banach spaces are also ”complete” in another sense, in that they are equipped with
most of the tools we would like to have in general: the norm allows us to compute vector

6



magnitude (length), the induced metric allows us to compute distance, and completeness
allows us to work more freely with limits and sequences. These characteristics make Banach
spaces central objects of research across several areas of analysis, and that Lp spaces possess
these characteristics make them amenable to more specific study as well. The fact that the
Lp spaces are complete is actually a major component of why the Lebesgue integral is such
a successful construction!

2.2 From other fields

While no other field has as direct an analog as the p- and ℓp-norm, other motivating
factors pop up across much of mathematics. Several other fields whose study depends on
that of Lp spaces, and thus provides a motivating factor for the study of Lp spaces, are listed
below.

• Measure theory: another very natural way of reaching the Lp spaces, where—as men-
tioned several times—the Lp spaces are directly connected to issues with integrability.

• Fourier analysis: the Fourier transform is defined primarily on L1 and L2; specifically,
the classical Fourier transform forms a map from Lp → Lp where p ∈ [1, 2]. Properties
of L1 and L2 make results on Fourier transforms amenable, and in fact allow for some
of the central results on the Fourier transforms of functions in L1 ∩ L2 or L2 alone.

• Nonlinear partial differential equations: much of the theory of these rests on the theory
of Lp spaces, with results involving Lp spaces spanning topics from the 3D Navier-
Stokes equations to images processing involving the p-Laplacian. Unfortunately, these
results go far beyond the scope of what can be briefly summarized.

• Probability theory: the Lp norms yield the p-th moments of a random variable, which
are quantitiative measures that contain information about the function’s graph and
distribution. Along with the 1st and 2nd moments, the 3rd and 4th moments (corre-
sponding respectively to the L3- and L4-norms) appear nontrivially in many instances.

A common question is also the necessity of results on Lp for p ̸= 1, 2,∞, since those three
appear so often and the others so rarely; it happens that many of the more advanced results,
such as those in nonlinear partial differential equations, use other values of p liberally.

In addition, remaining within the context of Lp spaces, interpolation theorems such as
those discussed in Subsection 4.2 provide an impetus for studying all exponents p, by allowing
the transfer of some information from linear operators on functions in L1 and L∞ to operators
on L2 by way of all the intermediate exponents.

3 Fundamental Results on Lp Spaces

For all the setup and motivation, we still have yet to do anything with Lp spaces. Here
we endeavor to prove the theorems that show Lp spaces behave the way we have said they
do—in particular, we prove they are Banach spaces through a sequence of three core results.
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3.1 Hölder’s inequality

One of the most fundamental results on Lp spaces is Hölder’s inequality, which may be
thought of as an extension of the Cauchy-Schwarz inequality to the Lp spaces.

Theorem 3.1 (Hölder’s inequality). Let (X,A, µ) be a measure space and take p, q where
1 ≤ p ≤ ∞ and 1

p
+ 1

q
= 1. If f ∈ Lp and g ∈ Lq, then fg ∈ L1 and

∥fg∥1 ≤ ∥f∥p∥g∥q, (3.1)

with equality when |f |p and |g|q are linearly dependent in L1.

The p, q above are called Hölder conjugates ; we will use them again in some advanced
results. We also have the convention that 1 is the conjugate of ∞ and vice versa. The
inequality states that the norm of the (pointwise) product of two functions is bounded by
the product of the norms of the two functions, as expected intuitively. To prove the result,
we will need a lemma first, which in turn generalizes the well-known arithmetic-geometric
mean (AM-GM) inequality:

Lemma 3.2. Let a, b ≥ 0 and 0 < λ < 1. Then

aλb1−λ ≤ λa+ (1− λ)b,

with equality only when a = b.

Proof. The result is obvious when b = 0, so we may disregard that case. When b ̸= 0, we
are able to divide both sides by b and introduce the change of variable t = a

b
, such that we

would like to show tλ ≤ λt+ (1− λ), with equality only when t = 1.
Rearranging the inequality gives us tλ − λt ≤ 1 − λ; elementary techniques in calculus

tell us that tλ − λt is strictly increasing when t < 1 and strictly decreasing when t > 1, so
its maximum value must occur at t = 1. This maximum value, plugging in t = 1, is exactly
1− λ—therefore we have equality in that case, and by how the function acts elsewhere, the
inequality is strict for all other t. ■

Proof of Hölder’s inequality. We would like to reduce the cases we must consider. Firstly,
note that we may disregard the cases for which ∥f∥p = 0 or ∥g∥p = 0 (since this implies they
are zero almost everywhere), ∥f∥p = ∞, and ∥g∥p = ∞.

Also observe that the desired result is independent of scaling: if it holds for f, g, then
it holds for αf, βg where α, β are scalars, as absolute homogeneity dictates we may take
the scalars out of the norms and both sides are then scaled by the same amount. Thus we
may prove only the case where ∥f∥p = ∥g∥q = 1, and show we have equality exactly when
|f |p = |g|q almost everywhere.

We apply Lemma 3.2 by choosing a = |f |p, b = |g|q, and λ = 1
p
(note these are the

absolute values, not the p/q-norms!), this particular choice of λ is chosen because then
1− λ = 1

q
by definition. This yields the inequality

(|f(x)|p)
1
p (|g(x)|q)

1
q ≤ 1

p
|f(x)|p + 1

q
|g(x)|q

|f(x)g(x)| ≤ 1

p
|f(x)|p + 1

q
|g(x)|q.
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Integrating both sides, we see these absolute values come out to Lp-norms, which is useful
for us because we set the Lp-norms of f and g to 1:∫

X

|f(x)g(x)| dµ ≤ 1

p

∫
X

|f |p dµ+
1

q

∫
X

|g|q dµ

∥fg∥1 ≤
1

p
∥f∥p +

1

q
∥g∥q

∥fg∥1 ≤
1

p
+

1

q
= 1 = ∥f∥p∥g∥q.

Finally, equality holds here if and only if it holds in the first inequality, which by
Lemma 3.2 happens exactly when |f |p = |g|q (almost everywhere). ■

The statement of ”linear dependence” in the statement of Hölder’s inequality really means
that α|f |p = β|g|q almost everywhere for some scalars α, β, which should be easily seen from
how we just proved equality holds and the earlier scaling argument.

Armed with Hölder’s inequality, we may proceed to the first step in showing the Lp

spaces are Banach spaces: proving they are normed vector spaces, i.e. that the Lp norm
satisfies the norm axioms. Recall from Subsection 2.1.1 that these norm axioms are absolute
homogeneity, positive definiteness, and the triangle inequality.

From the consideration we made in Section 1, where we defined Lp as the set of equivalence
classes of p-integrable functions, as well as the fact that positivity is a given since we take
the absolute value of the function inside the integral, we have positive definiteness.

Absolute homogeneity follows from the fact that we can take out a scalar s from the
Lp-norm:

∥sf∥p =
[∫

X

|sf |p
] 1

p

=

[∫
X

|s|p|f |p
] 1

p

=

[
|s|p
∫
X

|f |p
] 1

p

= |s|
[∫

X

|f |p
] 1

p

and so it stands to prove the generalization of the triangle inequality on Lp, which is
Minkowski’s inequality.

3.2 Minkowski’s inequality

Recall the triangle equality in Euclidean space, which geometrically states that the sum
of the lengths of any two sides must be greater than or equal to the length of the remaining
side, and which has the form of

∥x⃗+ y⃗∥ ≤ ∥x⃗∥+ ∥y⃗∥.

With this in hand, Minkowski’s inequality should look familiar:

Theorem 3.3 (Minkowski’s inequality). Let f, g ∈ Lp for 1 ≤ p ≤ ∞. Then f + g ∈ Lp and

∥f + g∥p ≤ ∥f∥p + ∥g∥p. (3.2)
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Proof. We trivially have the result for the cases p = 1 or f + g = 0 almost everywhere, so
we may disregard those cases. When p > 1 and f + g ̸= 0, we may write the inequality

|f + g|p ≤ (|f |+ |g|)|f + g|p−1 (3.3)

= |f∥f + g|p−1 + |g∥f + g|p−1, (3.4)

since |f |+ |g| ≥ |f +g|. Notice also that (p−1)q = p when q is conjugate to p, by definition,
so that |f + g|p−1 ∈ Lq; then we may apply Hölder’s inequality to the two terms on the
right-hand side above to yield

|f | ∈ Lp, |f + g|p−1 ∈ Lq =⇒ ∥ |f | · |f + g|p−1 ∥1 ≤ ∥f∥p · ∥ |f + g|p−1∥q

and likewise for g. Then in recognizing that the LHS of the above is the integral of what we
have in (3.4), that

∥ |f | · |f + g|p−1 ∥1 =
∫
X

|f ||f + g|p−1 dµ,

we may integrate (3.4) and make the substitution to yield∫
X

|f + g|p dµ ≤ ∥f∥p · ∥ |f + g|p−1∥q + ∥g∥p · ∥ |f + g|p−1∥q

= (∥f∥p + ∥g∥p) · ∥ |f + g|p−1∥q.

Again, however, we invoke that (p− 1)q = p on the far-right term, such that

∥ |f + g|p−1∥q =
[∫

X

(|f + g|p−1)q
] 1

q

dµ =

[∫
X

|f + g|p
] 1

q

dµ.

Since this is guaranteed to be positive, we may divide both sides without flipping the sign:[∫
X

|f + g|p dµ
]1− 1

q

≤ ∥f∥p + ∥g∥p.

But notice that 1− 1
q
= 1

p
, so the LHS is also ∥f + g∥p. Thus we have the desired result:

∥f + g∥p ≤ ∥f∥p + ∥g∥p. ■

Therefore, by our arguments earlier about positive definiteness and absolute homogeneity,
we get the corollary:

Corollary 3.4. The Lp-norm is a norm on Lp(X,A, µ).

3.3 Riesz-Fischer’s theorem

Minkowski’s theorem just showed we can induce a metric on the Lp spaces by way of the
Lp-norm, so we would like to finally be able to use this metric to show that Lp is complete.

To complete the proof that Lp spaces are Banach spaces after having shown that they are
normed vector spaces, we must show they are complete—every Cauchy sequence of functions
in Lp converges to a function in Lp. This result is commonly called Riesz-Fischer’s theorem.
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Theorem 3.5 (Riesz-Fischer). Every Lp space is complete under the Lp-norm.

To prove this, we will need to recall the monotone and dominated convergence theorems
from measure theory:

Theorem 3.6 (Monotone convergence). Let (X,A, µ) be a measure space and f1, f2, . . .
a sequence of measurable functions from X → [0,∞] such that for all x ∈ X, we have
0 ≤ f1(x) ≤ f2(x) ≤ · · · . Let f(x) = limn→∞ fn(x). Then∫

X

f dµ = lim
n→∞

∫
X

fn dµ.

Theorem 3.7 (Dominated convergence). Let (X,A, µ) be a measure space, define an inte-
grable function g : X → [0,∞] (i.e. g ∈ L1), and let f1, f2, . . . be a sequence of measurable
functions from X → [0,∞] such that limn→∞fn(x) exists for each x ∈ X. Call this limit
function f :

f(x) = lim
n→∞

fn(x).

Suppose furthermore that fn(x) ≤ g(x) for all n, x. Then f and all fns are integrable, such
that ∫

X

f dµ = lim
n→∞

∫
X

fn dµ.

We will also need a lemma on proving completeness. A series
∑∞

1 fn converges to f if
limn→∞

∑n
1 fn = f , and is absolutely convergent if

∑∞
1 ∥fn∥ < ∞.

Lemma 3.8. A normed vector space V is complete if every absolutely convergent series in
V converges.

Proof. The converse is also true, but we won’t need that result; we will also use notation as
working in Lp in this proof. Let {fn} be a Cauchy sequence. Then in Definition 2.4, we may
choose ε = 2−j and N = nj, where we have an increasing sequence of integers n1 < n2 < · · · ,
such that ∥fn − fm∥p < 2−j for all m,n > nj, i.e. the bound between successive terms gets
tighter as the indices tend to infinity.

Define another sequence {gj} such that g1 = fn1 and gj = fnj
− fnj−1 for j > 1. Then

clearly the sum
∑k

1 gj = fnk
, and we have that

∞∑
1

∥gj∥p ≤ ∥g1∥p +
∞∑
1

2−j = ∥g∥p + 1 < ∞,

the former following from our statement that ∥fn − fm∥p < 2−j for all m,n > nj and the
latter following from the famous infinite sum

∑∞
1 2−n = 1. Therefore limn→∞ fnk

=
∑∞

1 gj
exists and is in V , and it is easy to see from the definition of a Cauchy sequence that its limit
is the same as limn→∞ fn. Therefore limn→∞ fn ∈ V , and by Definition 2.5, we are done. ■

We are now equipped to prove Riesz-Fischer’s theorem.
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Proof of Riesz-Fischer. Let {fk} ∈ Lp be a Cauchy sequence, such that
∑∞

1 ∥fk∥p = B < ∞
for some B. Take the partial sums Gn =

∑n
1 |fk| and G = limn→∞Gn =

∑∞
1 |fk|. It follows

that ∥Gn∥p ≤
∑n

1 ∥fk∥p ≤ B for all n, because[∫
X

||f1|+ · · ·+ |fn||p dµ
] 1

p

≤
[∫

X

|f1|p dµ
] 1

p

+ · · ·+
[∫

X

|fn|p dµ
] 1

p

(3.5)

and of course
∑n

1 ∥fk∥p ≤
∑∞

1 ∥fk∥p = ∞. Notice that the outer absolute value bars are
irrelevant inside the integral in the LHS, so we may see that[∫

X

||f1|+ · · ·+ |fn||p dµ
] 1

p

=

[∫
X

(|f1|+ · · ·+ |fn|)p dµ
] 1

p

≤ B

=

[∫
X

Gp
n dµ

] 1
p

≤ B

=⇒
∫
X

Gp
n dµ ≤ Bp.

We may apply the Monotone Convergence Theorem with the sequence Gn and limiting
function G to yield that ∫

X

Gp dµ = lim
n→∞

∫
X

Gp
n dµ,

from which it follows clearly that G is p-integrable and thus G ∈ Lp. Between this and the
fact that each

∫
X
Gp

n dµ is bounded, we may easily see that G(x) < ∞ almost everywhere.
In particular, by our definition of G, this means that the series

∑∞
1 fk converges almost

everywhere (though note the distinction between G =
∑∞

1 |fk| and the above). Let this
sum be F , such that F =

∑∞
1 fk; we see immediately that |F | ≤ G and therefore F is

p-integrable, so F ∈ Lp.
We may also see that ∣∣∣∣∣F −

n∑
1

fk

∣∣∣∣∣
p

≤ (2G)p ∈ L1. (3.6)

To see this, consider the alternative formulation∣∣∣∣∣
∞∑
n

fk

∣∣∣∣∣
p

≤

(
2

∞∑
1

|fk|

)p

∈ L1,

from which the inequality should be immediately evident. The fact that (2G)p ∈ L1 follows
from the fact that G ∈ Lp =⇒ Gp ∈ L1, i.e. if G is p-integrable then Gp is integrable.

Therefore our difference of series |F −
∑n

1 fk|
p ∈ L1 as well, so we may integrate it.

Notice that this is closely related to the Lp-norm of the same function:

∫
X

∣∣∣∣∣F −
n∑
1

fk

∣∣∣∣∣
p

dµ =

[∫
X

∣∣∣∣∣F −
n∑
1

fk

∣∣∣∣∣
p

dµ

] 1
p

p

=

∥∥∥∥∥F −
n∑
1

fk

∥∥∥∥∥
p

p

. (3.7)
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Applying the dominated convergence theorem to (3.6) with g = G and fn = |F −
∑n

1 fk|
p

shows us:∫
X

lim
n→∞

∣∣∣∣∣F −
n∑
1

fk

∣∣∣∣∣
p

dµ = lim
n→∞

∫
X

∣∣∣∣∣F −
n∑
1

fk

∣∣∣∣∣
p

dµ = lim
n→∞

∥∥∥∥∥F −
n∑
1

fk

∥∥∥∥∥
p

p

,

but notice that the limit in the LHS tends to zero: limn→∞ |F −
∑n

1 fk|
p
= |F − F |p = 0 by

definition of F as the infinite sum of the fk, so we have that

lim
n→∞

∥∥∥∥∥F −
n∑
1

fk

∥∥∥∥∥
p

p

= 0 =⇒ lim
n→∞

∥∥∥∥∥F −
n∑
1

fk

∥∥∥∥∥
p

= 0,

and therefore the series
∑∞

1 fk is absolutely convergent in the Lp-norm. We showed earlier
that

∑∞
1 fk is convergent almost everywhere, so by Lemma 3.8, Lp is complete. ■

3.4 Density of simple functions

Having proven that Lp spaces are Banach spaces, we would like to prove other properties
on them. We may prove results that hold for all f ∈ Lp by proving them on a dense subspace
of Lp and extending the result by continuity, rather than painstakingly proving them for the
whole space. It happens that a very fortuitous subset of Lp is dense—the simple functions s,
those that take on only a finite number of values, defined by the constant values they take
on over each interval.

Theorem 3.9. For 1 ≤ p ≤ ∞, the simple functions in Lp are dense in Lp.

Proof. We would like to show that we can approximate any function f ∈ Lp by simple
functions. Then there is a sequence {fn} of simple functions that converge to f pointwise
almost everywhere and such that |fn| ≤ |f |. Clearly each fn ∈ Lp, and |f−fn|p ≤ 2p|f |p ∈ L1

(with equality when fn = −f), again since f being p-integrable implies |f |p is integrable.
Applying the dominated convergence theorem with g = 2p|f |p and the fn = |f − fn|p,

justified as the fn converge to f , tells us that∫
X

lim
n→∞

|f − fn|p dµ = lim
n→∞

∫
X

|f − fn|p dµ

0 = lim
n→∞

∥f − fn∥pp,

as the fn converging to f pointwise means the internal limit on the LHS goes to infinity, and
the RHS integral is the pth power of the Lp norm of f − fn. Therefore any f ∈ Lp can be
approximated arbitrarily well by simple functions, so it follows that the simple functions are
dense in Lp. ■

4 Advanced Results on Lp Spaces

Having established the fundamentals of Lp spaces, we now turn to addressing some of
the more advanced results that make Lp unique and useful. We discussed some of their
applications in Subsection 2.2, and these are some of the results that make Lp spaces so well
suited to those applications.
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4.1 Inclusions between Lp spaces

4.1.1 General inclusions

A natural question to ask is when a function f ∈ Lp is also in Lq for some q ̸= p. Näıvely
one might expect this to have a simple answer, like expecting every square-integrable function
in L2 to also be integrable in L1, but this happens to not be true, as seen by the following
two examples:

Lemma 4.1. Consider f = 1
x
over X = [1,∞) equipped with the Lebesgue measure. Then

f ∈ L2 but f ̸∈ L1.

Lemma 4.2. Consider f = 1√
x
over X = [1,∞) equipped with the Lebesuge measure. Then

f ∈ L1 but f ̸∈ L2.

The integration of the function 1
x
is a basic exercise in calculus classes, and its divergence

in the integral to infinity is a product of its antiderivative being the natural logarithm;
however, both 1

x2 and 1√
x
converge as x → ∞, going to zero. Since L1 ̸⊂ L2 and L2 ̸⊂ L1,

there cannot be any general inclusion Lp ⊂ Lq.
However, we can find inclusion results between Lp(X,A, µ) and Lq(X,A, µ) given more

restrictions on the underlying set X. For instance, the natural intuition is correct when X
is finite:

Proposition 4.3. If µ(X) < ∞, then for 1 ≤ p < q < ∞, Lq(X,A, µ) ⊂ Lp(X,A, µ).

Proof. Take a function f ∈ Lq; we will show f ∈ Lp. The fact that the reverse inclusion
does not hold should be obvious—consider extreme cases where q ≫ p. We consider the
functions F = |f |p and G = 1, with exponents P = q

p
(notice this is greater than 1) and Q

its conjugate, i.e. 1
P
+ 1

Q
= 1; we may then apply Hölder’s inequality, which tells us that

∥FG∥1 ≤ ∥F∥P∥G∥Q.

Taking ∥F∥P is justified as ∥F∥P = [|f |p]
q
p = |f |q, which is valid as f ∈ Lq; obviously ∥G∥Q

is justified since G = 1 and 1 is everything-integrable. Expanding the above equation reveals
that ∫

X

FG dµ ≤
[∫

X

|F |P dµ

] 1
P

+

[∫
X

|G|Q dµ

] 1
Q

∫
X

|f |p dµ ≤
[∫

X

|f |
q
p dµ

] p
q

+

[∫
X

1 dµ

]1− p
q

∥f∥pp ≤ ∥f∥qq + µ(X)1−
p
q < ∞. (4.1)

Quickly unpacking this, the second line is merely a restatement of the first. The changes in
the third line follow from the fact that

∫
X
|f |

q
p dµ ≤

∫
X
|f |q dµ = ∥f∥qq and that

∫
X
1 dµ =

µ(X) by definition. Since f ∈ Lq, ∥f∥q < ∞ and therefore its qth power is also finite. Since
µ(X) < ∞ by hypothesis, that term is also finite, so their sum is finite and therefore so is
the Lp-norm of f ; therefore, f ∈ Lp. ■
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The above proof also nicely shows why this fails for µ(X) = ∞; then the RHS of the
final inequality would be infinity, so the Lp-norm of f could be infinite as well. There are
also further results that we can generalize this to, given our intuition: consider L1(X,A, µ)
and L∞(X,A, µ) as comparative examples, where X = [0,∞) and µ = λ. This provides us
the useful framework of Riemann integration from single-variable calculus to work within,
which will hopefully help the reader’s intuition.

Here, functions in L1 are permitted to blow up to infinity around 0, such as 1√
x
as in

the earlier example, but must decay as x → ∞ to ensure the integral to infinity remains
finite. On the contrary, functions in L∞ are those for which there exists a finite value (the
essential supremum) such that the function takes on higher values at a set of points that
has measure zero; therefore such functions have no requirements on decay (i.e. constant
functions f(x) = c, where obviously said finite value is just c), but cannot blow up to
infinity anywhere, as otherwise the essential supremum would not exist.

Intuitively, as 1 and ∞ are the ends of the possible range of exponents p, one might
expect some similar relation to hold for the intermediate exponents. And something similar
indeed does hold:

Theorem 4.4. Let 1 ≤ p < q < ∞. Then the following hold:

1. Lq(X,A, µ) ⊂ Lp(X,A, µ) if and only if X does not contain sets of arbitrarily large
finite measure.

2. Lp(X,A, µ) ⊂ Lq(X,A, µ) if and only if X does not contain sets of arbitrarily small
nonzero measure.

Proof of (1). This is mostly an extension of Proposition 4.3. The if direction follows im-
mediately from that proposition, considering that ”contains sets of arbitrarily large finite
measure” is equivalent to ”has infinite measure” since there are no bounds on the measure
of measurable sets.

The only if direction follows from some more intensive functional analysis. In particular,
we require a result on Banach spaces called the closed graph theorem, which is stated as
follows:

Theorem 4.5 (Closed graph theorem). A linear operator between Banach spaces is contin-
uous if and only if the graph of that function is closed.

In turn, the graph of a function f is the set {(x, f(x)) : x ∈ dom f} where dom f is the
domain of f , and closure here is in the sense of a topological space. We will use this result
without proof. The idea is to show that the embedding operator that sends functions ins
Lq to functions in Lp is continuous; this is one scenario in which completeness properties of
Banach spaces become useful.

Let {fn} be a sequence of functions that converges to f in the Lq-norm, and to g in the
Lp-norm. We can extract a subsequence of {fn} that converges almost everywhere to both
f and g, which in turn implies f = g; this is done by taking a subsequence that converges
almost everywhere to f , which will still converge to g in the Lp-norm, and then taking a
subsequence of that subsequence that converges almost everywhere to g. This implies the
set {(f, E(f)) : f ∈ Lq} will be closed when E is the inclusion map embedding Lq into Lp,
from which it follows that this embedding is continuous.
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Continuity in this sense implies there exists some finite constant C such that ∥f∥p ≤
C∥f∥q. Since the underlying set X of the measure space (X,A, µ) can be written as a limit
of measurable sets of individually finite measure, suppose the sequence {An} ⊂ A where
limn→∞An = X, we may consider the indicator functions χAn of these to yield that

∥χAn∥p ≤ C∥χAn∥q =⇒ µ(An)
1
p ≤ Cµ(An)

1
q .

Isolating C yields that

µ(An)
q−p
pq ≤ C =⇒ µ(An) ≤ C

pq
q−p ,

since p ̸= q. Taking the limit n → ∞ yields that µ(X) is bounded by a finite value, and
therefore µ(X) < ∞, as desired. ■

Proof of (2). First suppose Lp ̸⊂ Lq, such that there is f ∈ Lp \Lq. Consider the set
AM := {x : |f(x)| ≥ M} ⊂ X, i.e. the set of all points where f is greater than some fixed
M . Since we have ∥f∥p < ∞ by construction, we may see that

∥f∥pp =
∫
X

|f |p dµ ≥
∫
AM

|f |p dµ ≥ Mpµ(AM).

Rearranging tells us that

µ(AM) ≤ ∥f∥pp
1

Mp
,

which shows that µ(AM) → 0 as M → ∞. But if there is ever M such that µ(AM) = 0
exactly, then we must have that f(x) < M for all x, which means by definition of the L∞-
norm that ∥f∥∞ ≤ M . Then we can find a contradiction telling us f ∈ Lq by way of proving
its Lq-norm is finite: notice that

∥f∥qq =
∫
X

|f |q dµ =

∫
X

|f |p|f |q−p dµ.

We can bound this using Hölder’s inequality again, where F = |f |p, G = |f |q−p, and our
exponents are the conjugates 1 and ∞; we then get that

∥f∥qq =
∫
X

|f |p|f |q−p dµ = ∥FG∥1 ≤ ∥F∥1∥G∥∞

≤
∫
X

|f |p dµ · ess supX |f |q−p

≤ ∥f∥pp∥f∥q−p
∞ ,

seeing as if M is the essential supremum of |f |, then we expect M q−p to be the essential
supremum of |f |q−p, respectively. We know ∥f∥p < ∞ since f ∈ Lp, so we have that by
definition; likewise, we just showed ∥f∥∞ < ∞ if we ever have µ(Am) = 0, so in that case
we would have that ∥f∥q∞ =⇒ f ∈ Lq, a contradiction. So if X contains sets of arbitrary
small nonzero measure, Lp ̸⊂ Lq; the contrapositive is what we desire, that Lp ⊂ Lq if X
does not contain sets of arbitrary small nonzero measure.

We also prove the other direction by contrapositive. SupposeX contains sets of arbitrarily
small positive measure. Choose a measurable set B1 such that µ(B1) ∈ (0, 1] and inductively
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choose Bn such that µ(Bn) ∈ (0, 1
3
µ(An−1)]. We may then find the following alternate

expressions for the measure of Bn:

µ(Bn) ∈
(
0,

1

3n

]
and µ(Bn+k) ∈

(
0,

1

3k
µ(An)

]
.

Now choose Cn = Bn \
⋃∞

k=1Bn+k, each of which has positive measure and is disjoint from
all the other Cn. We can construct a simple function f =

∑
n cnχCn for a sequence cn of

values it takes on, where its Lp-norm can be given as

∥f∥pp =
∫
X

|f |p dµ =

∫
C1

|c1|p dµ+

∫
C2

|c2|p dµ+ · · · =
∑
n

cpnµ(Cn).

Select cn = µ(Cn)
− 1

q , so that

∥f∥pp =
∫
X

|f |p dµ =
∑
n

µ(Cn)
1− p

q ≤
∑
n

1

3n(1−
q
p)

since by construction µ(Cn) ≤ µ(Bn) ≤ 1
3n
. Therefore our construction of f ∈ Lp. However,

f ̸∈ Lq:

∥f∥qq =
∫
X

|f |q dµ =
∑
n

µ(Cn)
1− q

q =
∑
n

1 = ∞,

so the Lq-norm of f is infinite. Therefore if X contains sets of arbitrarily small positive
measure, then Lp ̸⊂ Lq; the contrapositive tells us that if Lp ⊂ Lq, then X does not contain
sets of arbitrarily small positive measure. ■

We have seen the former case with our proof that a finite measure space has Lq ⊂ Lp; an
example in which Lp ⊂ Lq is the integers Z equipped with the counting measure, in which
case any p-integrable function must also be q-integrable.

4.1.2 Interpolative inclusions

We finish the section on Lp inclusions with some relations that will be instructive in the
next section.

Theorem 4.6. Let 1 ≤ p < q < r ≤ ∞. Then the following hold:

1. Lp(X,A, µ) ∩ Lr(X,A, µ) ⊂ Lq(X,A, µ).

2. Lq(X,A, µ) ⊂ Lp(X,A, µ) + Lr(X,A, µ).

In particular, the second part means that a function f ∈ Lq can be written as a sum of
a function in Lq and a function in Lr, hence the additive notation.

Proof of (1). Take a function f ∈ Lp∩Lr; we will show f ∈ Lq. By the inequalities, we have
q
p
> 1 and q

r
< 1, so there exists 0 < α < 1 satisfying

αq

p
+

(1− α)q

r
= 1.
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We would like to show the Lq-norm of f is finite, so we decompose it as follows:

∥f∥qq =
∫
X

|f |q dµ =

∫
X

|f |αq|f |(1−α)q dµ = ∥|f |αq|f |(1−α)q∥1,

which we can use in the LHS of Hölder’s inequality with functions |f |αq, |f |(1−α)q and expo-
nents p

αq
, r

(1−α)q
to yield

∥|f |αq|f |(1−α)q∥1 ≤ ∥|f |αq∥p/αq∥|f |(1−α)q∥r/(1−α)q.

Expanding the norms on the RHS gives us

∥|f |αq∥p/αq =
[∫

X

(|f |αq)
p
αq

]αq
p

=

[∫
X

|f |p
]αq

p

= ∥f∥αqp

∥|f |(1−α)q∥r/(1−α)q =

[∫
X

(
|f |(1−α)q

) r
(1−α)q

] (1−α)q
r

=

[∫
X

|f |r
] (1−α)q

r

= ∥f∥(1−α)q
r ,

so all in all we have

∥f∥qq = ∥|f |αq|f |(1−α)q∥1 ≤ ∥|f |αq∥p/αq∥|f |(1−α)q∥r/(1−α)q = ∥f∥αqp ∥f∥(1−α)q
r ,

showing us that
∥f∥qq ≤ ∥f∥αqp ∥f∥(1−α)q

r < ∞,

since the Lp and Lr norms of f are finite by hypothesis. Therefore the Lq-norm of f is also
finite, so f ∈ Lq. ■

Proof of (2). For the second inclusion, take a function f ∈ Lq; we will show f = g + h for
g ∈ Lp, h ∈ Lr. Define the set

E := {x : |f(x)| > 1}.

Take the indicator functions χE and χEc , and define g := fχE, h := fχEc . Clearly f = g+h,
since for all x ∈ X, exactly one of χE, χEc = 1, and now it stands to show integrability. We
have

|g|p = |f |pχp
E = |f |pχE ≤ |f |qχE,

since q > p, meaning that ∥g∥p ≤ ∥f∥q (just integrate the above equation and take powers),
so ∥g∥p < ∞ and therefore g ∈ Lp. Likewise, we have

|h|r = |f |rχr
Ec = |f |rχEc ≤ |f |qχEc ,

since the only contributing f -values are less than 1 in absolute value, in which case a higher
exponent (r > q) reduces their absolute value more. Therefore, we have ∥h∥r ≤ ∥f∥q, so
h ∈ Lr. The conclusion follows immediately. ■
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4.2 Interpolation theorems

As mentioned earlier, interpolation theorems allow us to pass information from operators
on some Lp spaces to those on others. In particular, having seen that for 1 ≤ p < q < r ≤ ∞,
we have the inclusion (Lp ∩ Lr) ⊂ Lq ⊂ (Lp + Lr), a common question in the application of
Lp spaces is whether a linear operator (a structure-preserving map on a vector space; here, a
function operating on the function space Lp) that is bounded on both Lp and Lr will also be
bounded on Lq. The answer to this question turns out to be yes, as shown by the following
two theorems. The proofs of these theorems require topics too advanced to provide here,
but we will attempt to dissect the intuition behind each for the reader.

4.2.1 The Riesz-Thorin interpolation theorem

The motivation for the Riesz-Thorin interpolation theorem stems naturally from Theo-
rem 4.6, namely (2): applications of Lp spaces are often concerned with operators defined
on Lp + Lr.

One example from Fourier analysis invokes the Riemann-Lebesgue lemma, which shows
that the Fourier transform maps L1(Rd) boundedly into L∞(Rd), and Plancherel’s theorem,
which shows that the Fourier transform maps L2(Rd) boundedly into itself, to show that the
Fourier transform F extends to (L1 + L2)(Rd) by setting F(f1 + f2) = FL1(f1) + FL2(f2).

However, these are effectively two versions of the same operator: FL1 : L1(Rd) → L∞(Rd)
and FL2 : L2(Rd) → L2(Rd). These are identical in that they agree on the space (L1∩L2)(Rd),
and we are justified in considering them the same.

Therefore we may desire to study operators mapping two domain spaces Lp1 and Lr1 to
two target spaces Lp2 and Lr2 , which map Lp1 +Lr1 to Lp2 +Lr2 ; we may expect that these
operators also operate on Lq0 , mapping it into Lq1 (using similar notation to Theorem 4.6
for clarity). The Riesz-Thorin interpolation theorem gives us this result when this operator
is linear:

Theorem 4.7 (Riesz-Thorin). Suppose that (X,A, µ) and (Y,B, ν) are measure spaces, with
p0, p1, q0, q1 ∈ [1,∞]. If q0 = q1 = ∞, suppose also that ν is semifinite. For 0 < t < 1, define
pt and qt by

1

pt
=

1− t

p0
+

t

p1
and

1

qt
=

1− t

q0
+

t

q1
.

Suppose T is a linear operator from Lp0(X,A, µ)+Lp1(X,A, µ) into Lq0(Y,B, ν)+Lq1(Y,B, ν)
such that ∥Tf∥q0 ≤ M0∥f∥p0 for f ∈ Lp0(X,A, µ), and ∥Tf∥q1 ≤ M1∥f∥p1 for f ∈
Lp1(X,A, µ). Then ∥Tf∥q1 ≤ M1−t

0 M t
1∥f∥pt for f ∈ Lpt(X,A, µ).

While this is quite the mouthful to unpack, the underlying intuition is that linear op-
erators between sumsets of Lp spaces have bounded norms, and the theorem furthermore
provides this bound.

This is often useful for finding results on the more complex Lp spaces; L1, L2, and L∞

have quite simple structure, and so we would like to work with these spaces instead of, say,
L174.3. The Riesz-Thorin interpolation theorem allows us to prove theorems in some of these
simple cases and interpolate between them to prove the theorems on all intermediate Lp

spaces, considerably simplifying our work.
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However, not every operator under study is linear; a result on nonlinear operators was
given by Józef Marcinkiewicz and bears his name, which we will now examine.

4.2.2 The Marcinkiewicz interpolation theorem

We will need to define another advanced notion that we glossed over in this paper, weak
Lp. There is a lot more to the theory of weak Lp, but what is necessary to be understood
for the Marcinkiewicz interpolation theorem is as follows:

Definition 4.8. Given a measurable function f on a measure space (X,A, µ), define its
distribution function λf : (0,∞) → [0,∞] by

λf (α) = µ({x : |f(x)| > α}).

Definition 4.9. If f is a measurable function on a measure space (X,A, µ) with 0 < p < ∞,
we define the weak Lp norm [f ]p as

[f ]p =

(
sup
α>0

αpλf (α)

) 1
p

.

Equivalently, the weak Lp norm is the best constant C in the inequality λf (α) ≤ Cp

αp for all
p. We define the space weak Lp(X,A, µ) to be the set of all f where [f ]p < ∞.

Of note quickly is that the weak Lp norm is not actually a norm, since the triangle
inequality fails, but it is often of use for generalizing some of the useful results of Lp spaces
as we will shortly demonstrate. Now let T be a map from a vector space V of measurable
functions on (X,A, µ) to the space of all measurable functions on (Y,B, ν), and we will need
to bring in a few more definitions. Namely, Marcinkiewicz’s interpolation theorem attempts
to characterize bounds on sublinear maps, so we will need to define those:

Definition 4.10. T is sublinear if |T (f + g)| ≤ |Tf | + |Tg| and |T (cf)| = c|Tf | for all
f, g ∈ V and c > 0.

Contrast this with the definition of a linear operator, where the inequality is an equality.
We are interested in two types of sublinear operators between Lp spaces, both of which have
particular boundedness restrictions:

Definition 4.11. A sublinear map T is strong type (p, q), with 1 ≤ p, q ≤ ∞, if Lp(X,A, µ) ⊂
V , T maps Lp(X,A, µ) into Lq(Y,B, ν), and there exists a constant C > 0 such that ∥Tf∥q ≤
C∥f∥p for all f ∈ Lp(X,A, µ).

Strong type sublinear maps are bounded from Lp → Lq: the Lq-norm of the image
of f ∈ Lp is at most a constant value times its Lp-norm. Likewise, we define notions of
boundedness on operators between weak Lp spaces:

Definition 4.12. A sublinear map T is weak type (p, q), with 1 ≤ p ≤ ∞ and 1 ≤ q < ∞,
if Lp(X,A, µ) ⊂ V , T maps Lp(X,A, µ) into weak Lq(Y,B, ν), and there exists C > 0 such
that [Tf ]q ≤ C∥f∥p for all f ∈ Lp(X,A, µ). T is also weak type (p,∞) if and only if T is
strong type (p,∞).
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Weak type sublinear maps are bounded rather from Lp → weak Lq: the weak Lq-norm
of the image of f is at most a constant value times its Lp-norm. We are now equipped to
state and unpack the Marcinkiewicz interpolation theorem.

Theorem 4.13 (Marcinkiewicz). Suppose that (X,A, µ) and (Y,B, ν) are measure spaces,
p0, p1, q0, q1 ∈ [1,∞] where p0 ≤ q0, p1 ≤ q1, and q0 ̸= q1, and

1

p
=

1− t

p0
+

t

p1
and

1

q
=

1− t

q0
+

t

q1
, where 0 < t < 1.

If T is a sublinear map from Lp0(X,A, µ)+Lp1(X,A, µ) to the space of measurable functions
on Y that is weak types (p0, q0) and (p1, q1), then T is strong type (p, q). More precisely, if
[Tf ]qj ≤ Cj∥f∥p, for j = 0, 1, then ∥Tf∥q ≤ Bp∥f∥p where Bp depends only on pj, qj, Cj in
addition to p; and for j = 0, 1, Bp|p− pj| (resp. Bp) remains bounded as p → pj if pj < ∞
(resp. pj = ∞).

A more digestible statement of the theorem is that if T is a bounded sublinear operator
from Lp to weak Lp and from Lr to weak Lr, then T is also bounded from Lq to Lq for any
1 ≤ p < q < r ≤ ∞, i.e. regular boundedness still holds even if T is only weakly bounded at
the extremes.

Like Riesz-Thorin, Marcinkiewicz provides these bounds, but they are weaker estimates
than those provided in Riesz-Thorin’s theorem. Further comparing the two, Marcinkiewicz
requires more stringent restrictions on pj and qj than Riesz-Thorin, and has weaker hypothe-
ses: it considers sublinear operators rather than linear, and requires only weak boundedness
at the extremes rather than strict boundedness. Therefore both see use in the application
of Lp spaces, though these are rather too advanced to see exposition in this paper.

4.3 Further reading

The reader who wishes to learn more about the theory of Lp spaces may find Folland’s
Real Analysis instructive: it covers much of the content of this paper as well as some content
this paper excludes, such as weak Lp and dual spaces. Stein and Shakarchi’s Functional
Analysis also includes quality content on Lp spaces and more about their nature as Banach
spaces. As always, Google, the Math Stack Exchange, Math Overflow, and Wikipedia are
useful sources as well.
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