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1. Introduction

Probability theory is concerned with assigning probabilities to
events. These events can be viewed as sets, and the probability can be
viewed as a function which takes a set from a sample space at input and
assign a real number in the closed interval [0, 1]. Probability functions
can therefore be interpreted as a measure. σ−algebras and measure
theory can provide mathematical rigor to the study of probability. In
probability theory, zero-one laws are laws that assign the probability
of an event to be either 0 or 1. Kolmogorov’s zero-one law is one such
law relating to the tail field of sequences of independent events. In
this expository paper, I review some basic basic theory and definitions,
followed by proof of the Kolmogorov’s zero-one law using the tools of
measure theory.

2. Preliminary Definitions

This section will review some basic definitions.

Definition 2.1. Given a set Ω, a σ−algebra A is a collection of subsets
of Ω satisfying

• Ω, ϕ ∈ A
• If A ∈ A then Ac ∈ A
• If A1, A2, . . . , An is a countable collection of elements of A then

n⋃
i=1

Ai ∈ A and
n⋂

i=1

Ai ∈ A

Therefore, A is closed under countable unions and intersections.

Definition 2.2. Given a set Ω and a σ-algebra on Ω, a measure µ on
(Ω,A) is a function µ : A → [0,∞] satisfying
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• µ(ϕ) = 0IfA1, A2, . . . is a finite or countable collection of pair-
wise disjoint elements of A then

µ

(
n⋃

i=1

Ai

)
=

n∑
i=1

µ(Ai)

Definition 2.3. Let A be a collection of subsets of Ω. The smallest σ-
algebra containing A, denoted as σ(A), is defined as the intersection of
all σ-algebras containing A. Since it is the intersection of σ-algebra’s,
σ(A) is also a σ-algebra. σ(A) is also called the σ-algebra generated
by A. σ(A) is also unique. Let A1 = σ(A) and A2 = σ(A). A1 is
the intersection of σ-algebra’s containing A and A2 contains A which
implies that A1 ⊆ A2. Similarly, we can show A2 ⊆ A1. This implies
that A1 = A2 and σ(A) is unique.

With the above definitions, we are ready to define a probability space.

Definition 2.4. A probability space is a triple (Ω,A,P) where

• Ω is the sample space
• A is a σ-algebra of Ω
• P is a measure P : A → [0, 1] satisfying P(Ω) = 1

For example, for a simple case when we were studying the roll
of a single die, then we can define the probability space with Ω =
{1, 2, 3, 4, 5, 6}, a σ-algebra A := {A : A ⊆ Ω} and P defined as

P(A) =
#A

6
. The formalism of σ-algebra and measure theory is needed

in order to prevent additivity of uncountable sets. For example, con-
sider Ω = [0, 1] and P be the Lebesgue measure on Ω. If addivity of
uncountable sets was allowed then

P(Ω) = P

 ⋃
x∈[0,1]

{x}

 =
∑

x∈[0,1]

P({x}) = 0

which is an absurd result. Defining probability within the formalism
of σ-algebra and measure theory helps avoid such results. We will now
define independent events.

Definition 2.5. Let (Ω,A,P) be a probability space. A collection of
events, X1, X2, . . . , possibly infinite, is independent if for all n ∈ N,
and all possible finite combinations Xm1 , Xm2 , . . . , Xmn we have

P(Xm1 ∩Xm2 ∩ · · · ∩Xmn) =
n∏

i=1

P(Xmi
)
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It is not enough for the events to be pairwise independent. As seen in
the definition, every possible finite sub collection needs to be indepen-
dent for the entire collection to be independent.

3. Kolmogorov’s Zero-One Law

Definition 3.1. Let (Ω,A,P) be a probability space. Consider infin-
itely many events A1, A2, . . . ∈ A. The event, {An i.o.} referred as ”An

infinitely often” is defined as

{An i.o} =
∞⋂
n=1

∞⋃
i=n

Ai

Similarly, the event, {An a.a.} referred as ”An almost always” is defined
as

{An a.a.} =
∞⋃
n=1

∞⋂
i=n

Ai

Both {An i.o.}, {An a.a.} ∈ A {An i.o} can be interpreted as the set of
events that are in infinitely many of theAn. {An a.a} is the set of events
that are in all but a finite number of the An. Since each Ai ∈ A, from
the closure property of σ-algebra we have that {An i.o}, {An a.a.} ∈ A.
Consider the example of rolling a dice. If Ai is the event that the ith

roll is a 6, then {An i.o} is the event that 6 is rolled infinitely many
times. {An a.a} is the event that a 6 is rolled all but finitely many
times. Therefore, only a finite number of 1, 2, 3, 4, 5 are rolled. We
have that “almost always” is stronger than “infinitely often” as “almost
always” implies “infinitely often.”

Definition 3.2. Let (Ω,A,P) be a probability space. Let A1, A2, . . . ∈
A be a sequence of events. The tail field of these events is defined as

τ =
∞⋂
n=1

σ(An, An+1, An+2, . . .)

τ is a σ-algebra and members of τ are called tail events. For example
{An i.o}, {An a.a.} ∈ τ .

We will also make use of the following Lemma’s about independent
events.

Lemma 3.3. Let A1, A2, A3, . . . be independent events. Then σ(Ai)
and σ(A1, A2, . . . , Ai−1, Ai+1, . . .) are independent classes and for all
A ∈ σ(A1, A2, . . . , Ai−1, Ai+1, . . .) we have P(Ai ∩X) = P(Ai)P(X).

Lemma 3.4. Let A1, A2, A3, . . . , B1, B2, . . . be independent. Then

i If X ∈ σ(A1, A2, . . .) then X,B1, B2, . . . are independent.
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ii The σ-algebras σ(A1, A2, . . .) and σ(B1, B2, . . .) are independent
classes. So, if X ∈ σ(A1, A2, . . .), and Y ∈ σ(B1, B2, . . .) then
P(X ∩ Y ) = P(X)P(Y ).

We now have the preliminaries to introduce Kolmogorov’s Zero-One
Law.

Theorem 3.5. Kolmogorov’s Zero-One Law Let (Ω,A,P) be a
probability space. Let A1, A2, . . . ∈ A be a sequence of independent
events with tail field τ . If T ∈ τ then P(T ) ∈ {0, 1}

Proof. Consider n ∈ N. We have by definition T ∈ σ(An+1, An+2, . . .).
By Lemma 3.4(i), we have that T,A1, A2, . . . , An are independent. Now
consider S ∈ σ(A1, A2, . . .). Since T,A1, A2, . . . are independent we
have from Lemma 3.3 that S and T are independent. We also have by
definition that T ∈ τ ⊆ σ(A1, A2, . . . ). Therefore T is independent of
itself. Therefore by definition of independent events,

P(T ) = P(T ∩ T ) = P(T )P(T ) = P(T )2

It therefore follows that P(T ) ∈ {0, 1}. □

4. Discussion

Kolmogorov’s Zero-One Law is a much stronger statement than the
Borel-Cantelli Lemma’s which state

Lemma 4.1. Borel-Cantelli Lemma’s Let (Ω,A,P) be a probabil-
ity space. Let A1, A2, . . . ∈ A.

i If
∑

nP(An) < ∞ then P({An i.o.}) = 0
ii If

∑
n P(An) = ∞ and A1, A2, . . . are independent then

P({An i.o.}) = 1

The Borel-Cantelli Lemma applies for the specific events listed in
the lemma. However, Kolmogorov’s Zero-One Law applies to any tail
event. Since {An i.o} is a tail event, Kolmogorov’s law is more general
than the Borel-Cantelli Lemma. Also, Kolmogorov’s law tells us that
the probability of the tail event is 0 or 1, it does not provide a means to
determine what the probability is. Other means have been developed
to determine this probability.
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