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1. Introduction

Consider any billiard table that is a polygon. We can place a billiard ball anywhere on the table and push
the ball in any direction. The ball will move in a straight line until it reaches the edge of the table. At this
point, the ball will reflect off the edge and continue in a different direction such that the angle of incidence
is equal to the angle of reflection as shown in Figure 1a. We will assume that once the ball is in motion, it
will not stop moving. The path the ball takes is called its trajectory or orbit. A trajectory is periodic if the
ball returns to its starting position and direction of motion periodically.

(a) (b)

Figure 1. (A) A billiard ball reflects off an edge of a billiard table such that the angle on
incidence α and the angle of reflection β are equal. (B) A periodic trajectory in a hexagon.

Does every polygonal billiard table contain a periodic trajectory? Currently, this result has not been
proven yet, but in 1986, Masur [1] proved a special case of this result, that is for rational polygons, and in
1998, Boshernitzan, Galperin, Krüger, and Troubetzkoy [2] proved a stronger version of this special case. In
this paper, we will review the proof of this stronger theorem. A polygon is considered rational if all of its
interior angles are rational multiples of π. It turns out there are special properties of rational polygons that
can help us check for periodic trajectories. Given a starting position and direction of motion of the ball in a
rational polygon, there are a finite number of directions the ball will move in its trajectory. Masur’s theorem
shows that for every billiard ball position and direction of motion in the polygon, there exists a billiard ball
position along a periodic trajectory with an arbitrarily close direction of motion. This result can be used to
prove the following stronger theorem.

Theorem 1.1. [2] Let Q be a rational polygon. There exists an arbitrarily close approximation to any billiard
ball position and direction of motion in Q by a billiard ball position and direction of motion in a periodic
trajectory in Q.

2. Periodic trajectories in rational polygons

We start by defining a few terms that we will use throughout the rest of this paper.

Definition 2.1. Let Q be a rational polygon. The phase space M of Q is equal to M = Q× S1 where S1

is the set of all unit vectors.

The phase space is the set of all elements of the form (q, ϕ) where q is any point in Q and ϕ is any direction
in S1. We can visualize the phase space of Q by taking a right prism and gluing together the two bases. An
example of a phase space of a hexagon is shown in Figure 2a.
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Figure 2. (A) The phase space of a hexagon is comprised of hexagonal cross-sections, each
one representing a direction of motion of a billiard ball anywhere in the hexagon. (Adapted
from V. M. Chapela and M. J. Percino, March 7, 2011; see [3].) (B) A few cross-sections
which are floors of the phase space of the hexagon.

Each cross-section, called a floor of the phase space, represents a direction of motion of the billiard ball
in Q (Figure 2b). We denote the floor with direction ϕ as Q(ϕ).

Definition 2.2. [4] The flow of any polygonal billiard table Q is defined as the set of all billiard trajectories
in Q.

Definition 2.3. Define the invariant surface Rθ to be the set of floors that orbits containing the direction
θ pass through where θ ∈ S1.

An important method that is used to prove Theorem 1.1 is called unfolding. We will look at an example of
unfolding a periodic trajectory in the hexagon in Figure 3a. The segments of the trajectory are the straight
line paths between reflections. Let e1, e2, e3 and so on, be the set of edges in the hexagon the ball touches
after crossing segments 1, 2, 3 and so on, respectively. Then we can unfold the trajectory by first reflecting
the hexagon and trajectory about e1 (Figure 3b). We then reflect the new hexagon about e2 (Figure 3c).
If we continue this process, then we get an unfolded trajectory that is a straight line through a corridor of
polygons (Figure 3d). This method can be used for any polygon.

(a) (b) (c)

(d)

Figure 3. (A) A periodic trajectory in a hexagon. (B) After we reflect the hexagon and
trajectory about e1, the first segment and the reflected second segment form a straight line.
(C) The first three segments of the trajectory unfold into a straight line. (D) The unfolded
trajectory in a corridor of hexagons.
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A generalized diagonal is any segment of an orbit, that starts at a vertex of the polygon and ends at a
vertex, and has length equal to the the number of segments in the corresponding orbit. There are a countable
number of generalized diagonals in Rθ. This is true since there are finitely many generalized diagonals of
any given length and there are countably many possible lengths.

Definition 2.4. For any polygon Q, a billiard trajectory γ is dense in Q if for every point q and direction
ϕ where (q, ϕ) is in the phase space, there exists an arbitrarily close approximation to q and ϕ by a point q′

and direction ϕ′ such that (q′, ϕ′) is in the trajectory γ.

Definition 2.5. For any polygon Q and any given ε > 0, a billiard trajectory γ is ε-dense in Q if for any
point in Q, there exists a point on the trajectory γ such that the two points are at most ε apart.

Definition 2.6. A direction ϕ in S1 is a minimal direction if the orbits of all points on the floor Q(ϕ) are
dense in the polygon.

Definition 2.7. Define Orb(x, θ,N) as the section consisting of the first N segments of the forward orbit
starting at point x and an initial direction of θ where θ is any direction in S1, x is any point in Rθ, and
N ≥ 1.

We can replace θ by −θ to denote the backward orbit of the previous N segments before x. Note that
Orb(x, θ,N) = ∅ if the orbit starting at x with direction θ reaches a vertex less than N segments after x and
Orb(x,−θ,N) = ∅ if the orbit stops at a vertex less than N segments before x.

We need the following important lemma before we look at the proof of Theorem 1.1.

Lemma 2.8. Let θ in S1 be a minimal direction. Then for any ε > 0, there exists an integer N such that
for all x in Rθ, either Orb(x, θ,N) is ε-dense in Rθ or Orb(x, θ,N) = ∅.

We refer to [2] for the proof of this lemma. This lemma also holds for −θ as well. Now we will review the
proof of Theorem 1.1.

Proof of Theorem 1.1. Since minimal directions are dense in S1 [5], there is an arbitrarily close approximation
to any direction ϕ by a minimal direction θ0. To prove the theorem, we must show that there is an arbitrarily
close approximation to any point q0 and minimal direction θ0 by a point q1 and direction θ1 such that (q1, θ1)
is on a periodic trajectory. To show this, pick any minimal direction θ0. Then by Masur’s theorem, we can
find a periodic trajectory γ1 containing a direction θ1, that is arbitrarily close to θ0. We then use the
property that there is a corridor of N polygons consisting of both a section of the unfolded trajectory γ0
with direction θ0 and a section of the unfolded trajectory γ1 with direction θ1. This property can be proven
by contradiction. Next, if we choose θ1 so that the point p0, the farthest point on the unfolding of γ0 in the
Nth polygon, and the point p1, the farthest point on the unfolding of γ1 in the Nth polygon, are at most
ε/2 apart, then since the first N segments of γ0 are ε/2-dense in Rθ0 by Lemma 2.8, the first N segments of
the periodic trajectory γ1 are ε-dense in Rθ1 . Given that this holds for any minimal direction ϕ0, ε > 0, and
N , we can find a point q1 that is on the periodic trajectory γ1 and is an arbitrarily close approximation to
q0 as desired. This implies that for any point and direction in the polygon, we can find an arbitrarily close
approximation by a point and direction in a periodic trajectory. □

We refer to [2] for more details of this proof.
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[2] Boshernitzan, M., G. Galperin, T. Krüger, and S. Troubetzkoy. ”Periodic billiard orbits are dense in rational polygons.”

Transactions of the American Mathematical Society 350, no. 9 (1998): 3523-3535.

[3] Chapela, V. M., and M. J. Percino ”Twisted Polygonal Torus” see http://demonstrations.wolfram.com/TwistedPolygonalTorus,

Wolfram Demonstrations Project, March 7 2011
[4] Park, S. Woo. ”An introduction to dynamical billiards.” see https://math.uchicago.edu/may/REU2014/REUPapers/Park.pdf

(2014).
[5] Gutkin, Eugene. ”Billiards in polygons.” Physica D: Nonlinear Phenomena 19, no. 3 (1986): 311-333.

3


